The moon is our closest celestial neighbour and as a consequence is by far one of the most studied celestial bodies. By all accounts it’s a barren wasteland, covered in numerous pot marks from the asteroids that have bombarded it over its lifetime. However the more we investigate it the more we find out that, whilst there’s almost no chance of life being present there, many of the resources that life depends on can be found there. Whilst we’ve known for a while that it would be possible to extract water from the regolith on the surface new observations from NASA’s Moon Mineralogy Mapper instrument aboard India’s Chandrayaan-1 have revealed that there might be actual water on the Moon, just waiting there for us to use.

india-chandrayaan-1-spacecraftThe initial implications of this are obvious. Water is one of the fundamental resources required for any human based space mission and the amount required usually has to be brought along for the ride. This means the payload capacity used for bringing water along can’t be used for other things, like additional supplies or more equipment, and presents a big challenge for long duration flights. Having a source on the Moon means that any potential bases or colonies established there would have much less reliance on resupply missions from Earth, something which is the primary limiting factor for any off-world colonies that we attempt to establish.

However that pales in comparison when compared to what water on the Moon means for space in general: it’s a primary component for rocket fuel.

Water’s basic composition is hydrogen and oxygen which are the components which power many of the liquid fuelled rocket engines that operate today. Of course in their bonded state they’re not a ready to use propellent exactly so a process is required to break those bonds and get those atoms separated. Thankfully such a process exists, called electrolysis,  which splits water down into its component gasses which can then be stored and later used to send rockets on their way. Of course such a process relies on a stable power source which would likely be some like of large solar array backed up by a large battery bank to last through the 2 week long darkness that regularly blankets half the surface.

The biggest challenge that many of the long duration or large payload missions face is the fact that they require more fuel. Carrying more fuel unfortunately also means carry more fuel and there’s points of diminishing returns where you’re spending far too much fuel just to get yourself out of our gravity well. Having a refuelling station or the Moon (or, even better, constructing and launch payloads from there) would mean that we would put larger payloads into space and then push them to the outer reaches of the solar system without having to waste as much fuel to get ourselves out of Earth’s gravitational influence.

Of course seeing this kind of technology implemented is some ways off as it seems like NASA’s next target will be a flag planting mission on Mars. Such technology would be quite applicable to Mars as well seeing as the soil there has a lot of trapped water (and there’s plentiful water ice pretty much everywhere but the equatorial region) but it’d be far more valuable if it was implemented on the moon. In either case I believe this is foundational technology that will be pivotal in humanity pushing itself to the far reaches of our own solar system and, maybe one day, beyond.

 

About the Author

David Klemke

David is an avid gamer and technology enthusiast in Australia. He got his first taste for both of those passions when his father, a radio engineer from the University of Melbourne, gave him an old DOS box to play games on.

View All Articles