Space

Glonets M Satellite

Kosmos-2499 Most Likely Isn’t Some Anti-Satellite Weapons Platform.

The Outer Space Treaty, which has been signed and ratified by over a hundred countries, declares that space should be a peaceful domain, free of weapons and violence. There are numerous reasons for this however the most critical of these is avoiding the horrendous plague that is Kessler syndrome, the point at which our near earth orbits are so littered with space junk that launching anything becomes next to impossible. At the same time however the lack of an overt weapons capability in space leads to all sorts of whacky theories about military operations in space, fuelled by the lack of public data on classified missions. The latest of which is the mysterious Kosmos-2499 satellite which some are theorizing is Russia’s latest anti-satellite weapon.

Glonets M Satellite

Kosmos-2499 attracted the attention of numerous conspiracy theorists due to it’s semi-mysterious launch. Quite often classified payloads are launched alongside regular ones in order to hide their true nature and this was the case with Kosmos-2499, launching with 3 other communications satellites (Kosmos-2496~2498). It was initially tracked as space debris since the official launch manifest only listed 3 payloads, however shortly after Roscosmos confirmed that 4 satellites were launched on that particular rocket. This makes it an interesting, although not particularly unusual, launch but its behaviour following launch is what really got the crazies whipped up.

It changed it’s orbit.

Satellites don’t typically change their orbit very much so when one does it often becomes a target of interest for stargazers. The X-37B is probably the most notable example of a satellite that was able to do this which was also a military craft although it’s orbit meant that, should it have any anti-satellite capabilities, it wouldn’t have the opportunity to use them. Kosmos-2499 is in a similar position however it was in a position to rendezvous with 2 pieces of space debris, namely the remnants of a previous launch vehicle and it’s own booster. This has then led to a flurry of speculation that Kosmos-2499 has satellite-killing capabilities ranging from things like a pellet gun to grappling arms that can detach solar panels. All things considered I think that’s a pretty unlikely scenario and the satellite’s purpose is likely a lot more mundane.

The other satellites launched alongside Kosmos-2499 were pretty small in stature, coming in at about 250kg each. It’s then highly likely that Kosmos-2499 doesn’t exceed this by much and so the capabilities that they can integrate into it a pretty limited. Also when you consider that it’s likely carrying with it a ton of propellant in order to complete these orbital transitions, including the approaches, then you’re even further limited in what kind of payload you can bring along for the ride. Most likely then Kosmos-2499 is a platform for Russia to test close approaches to other objects on orbit (I’d hazard a guess in an automated fashion) with a view to integrate such technology into future projects.

Whilst I sometimes enjoy letting the conspiracy nut part of my brain run amok on these things the truth of the matter is usually far more mundane than we’d think it to be. Doing things in space is awfully difficult and building in radical capabilities like the ones people are talking about really isn’t that feasible, or even sensible. Indeed the best counters to a military presence in space are most often ground based things that can be done far cheaper and with a lot less hassle than trying to create some kind of satellite killing space robot. Kosmos-2499 might be a bit mysterious but I doubt it’s purpose is that exotic.

Supercritical CO2 Extraction

Life Without Water.

All life as we know it has one basic need: water. The amount of water required to sustain life is a highly variable thing, from creatures that live out their whole lives in our oceans to others who can survive for months at a time without a single drop of water. However it would be short sighted of us to think that water was the be all and end all of all life in our universe as such broad assumptions have rarely panned out to be true under sustained scrutiny. That does leave us with the rather puzzling question of what environments and factors are required to give rise to life, something we don’t have a good answer to since we haven’t yet created life ourselves. We can study how some of the known biological processes function in other environments and whether that might be a viable place for life to arise.

Supercritical CO2 Extraction

Researchers at the Washington State University have been investigating the possibility of fluids that could potentially take the place of water in life on other planets. Water has a lot of properties that make it conducive to producing life (as we know it) like dissolving minerals, forming bonds and so on. The theory goes that should a liquid have similar properties to that of water then, potentially, an environment rich in said substance could give rise to life that uses that liquid as its base rather than water. Of course finding something with those exact properties is a tricky endeavour but these researchers may have stumbled onto an unlikely candidate.

Most people are familiar with the triple point of substances, the point where a slight change in pressure or temperature can change it from any of its one three states (solid, liquid, gas) instantly. Above there however there’s another transition called the supercritical point where the properties of the gaseous and liquid phases of the substance converge producing a supercritical fluid. For carbon dioxide this results in a substance that behaves like a gas with the density of its liquid form, a rather peculiar state of matter. It’s this form of carbon dioxide that the researchers believe could replace water as the fluid of life elsewhere, potentially life that’s even more efficient than what we find here.

Specifically they looked at how enzymes behaved in supercritical CO2 and found that they were far more stable than the same ones that they had residing in water. Additionally the enzymes became far more selective about the molecules that they bound to, making the overall process far more efficient than it otherwise would have been. Perhaps the most interesting thing about this was that they found organisms were highly tolerant of this kind of fluid as several bacteria and their enzymes were found to be present in the fluid. Whilst this isn’t definitive proof for life being able to use supercritical CO2 as a replacement for water it does lend credence to the idea that life could arise in places where water is absent.

Of course whether that life would look like anything we’d recognise is something that we won’t really know for a long time to come. An atmosphere of supercritical C02 would likely be an extremely hostile place to our kind of life, more akin to Venus than our comfortable Earth, making exploration quite difficult. Still this idea greatly expands our concept of what life might be and what might give rise to it, something which has had an incredibly inward view for far too long. I have little doubt that one day we’ll find life not as we know it, I’m just not sure if we’ll know it when we see it.

Rosetta Philae Lander

10 Years in the Making: Rosetta’s Philae Lander Touches Down.

Comets are relics of an era that has long since passed. They formed in the same accretion disk that gave birth to our Earth, Sun and the rest of the solar system but managed to avoid being subsumed into a larger celestial body. This, along with the amazing show they put on whenever they come close to the Sun, makes them objects of particular interest to star gazers and scientists alike. However few craft have studied them as their highly elliptical orbits make it incredibly difficult to do anything more than a flyby. That is, of course, unless you’re the ESA’s Rosetta spacecraft which just made history by deploying its Philae lander to the surface of the Churyumov–Gerasimenko 67P comet.

Rosetta Philae Lander

Many would have heard about the Rosetta craft recently as it was the first craft to ever enter an orbit around a comet which was achieved back in August. However few would know that it’s been on that journey for over 10 years as the Rosetta craft was launched in March of 2004. Since then it’s been slowly making it’s way to rendezvous with 67P, using multiple gravity assists to give it the velocity it needed to match the comet’s speed. Once it arrived at the comet it began imaging its surface in incredible detail, searching for a landing site for it’s attached Philae lander. In the early hours of this morning the Philae lander detacted from its parent craft and began its descent down to the surface and shortly after we received confirmation that it had touched down successfully.

It’s not all good news unfortunately as whilst the telemetry indicates that the lander did make it to the surface the anchoring harpoons that are on it’s feet did not fire. This causes two problems, the first (and most troubling) of these is that the lander is not securely fixed to the comet’s surface. In the minuscule gravity of the comet the lander weighs about 1 gram, meaning any out gassing from the comet could flip the craft over, or worse, send it tumbling out into space. Additionally those harpoons also contained instruments for measuring surface density, a lesser issue but still a blow to the project all the same. The ESA is currently investigating the reasons behind this and might refire them to ensure that the lander doesn’t get blow away.

Firing the harpoons again is risky but the people behind the Rosetta program have never been one to shy away from potentially mission ending decisions. Back in 2007 they scheduled an incredibly low altitude pass by Mars, a mere 250KM above its surface, in order to correct its trajectory to be closer to 67P. The trouble with this though was Rosetta couldn’t use its solar panels during this manoeuvre due to it being in the shadow of Mars, forcing it to power down for the duration. The batteries on the craft were not designed with this purpose in mind however and so this trajectory correction was dubbed The Billion Euro Gamble which, thankfully, paid off.

Rosetta and Philae both carry with them a host of tools designed to analyse the make up of the 67P comet including spectrometers, thermal imagers and radio/microwave based devices. The original spacecraft design was far more ambitious, including such things a sample return mission ala Hayabusa, however whilst it might not be as lofty a mission as it once was it’s still highly capable of giving us a detailed picture of what makes up this comet. This will then give us incredible insight into the early stages of our solar system and how it evolved into what it is today.

Hopefully the harpoon issues will get sorted out in short order and the Philae lander can continue its work without the possibility of it getting blown out into the depths of space. Rosetta’s mission is slated to continue through to the end of next year, just after 67P buzzes passed us on its journey back out to the edges of our solar system. Like all good space missions there’s potential for it to go even longer and here’s hoping that Rosetta and Philae will continue to deliver long past their used by date.

NTSB_Go-Team_inspects_a_tail_section_of_VSS_Enterprise

Virgin Galactic SpaceShipTwo Crashes.

Putting things into space isn’t an easy thing to do. The amount of energy required to reach orbital speeds means that we really only have one option available to us: strapping whatever it is to a giant barrel of explosives and setting light to it. Whilst the science of this is now well understood it doesn’t mean that we’re immune from mistakes, especially those which arise from the inherently complex systems that these rockets have become. Indeed just last week we saw the even a long time space contractor, one with numerous launches under its belt, can suffer a catastrophic accident without any indication that things were going to go wrong. Unfortunately tragedy has struck another private space venture with Virgin Galactic’s SpaceShipTwo crashing, killing one of the test pilots.

NTSB_Go-Team_inspects_a_tail_section_of_VSS_Enterprise

This unfortunately isn’t the first tragedy to befall this project. Back in 2007, shortly after their X-prize winning journey and subsequent partnership with Virgin, Scaled Composites had a fatal accident that killed 3 of their engineers. Whilst this wasn’t a flight accident, it was a catastrophic failure of the nitrous oxide tank that the ship uses, it did make many people question just how safe this kind of craft could be made. To their credit the subsequent 7 years were incident free with the prototype undergoing numerous tests both in the air and back down on the ground. Last week however that streak was broken when the VSS Enterprise broke up over the desert in California, killing one of the pilots and destroying the craft.

Initial reports centred on the fact that SpaceShipTwo was testing a new fuel mixture which could have potentially exploded causing the craft to fail. For a motor like the one in SpaceShipTwo, namely a hybrid rocket engine, this is highly unlikely as the fuel doesn’t have the same capability to combust explosively as its liquid cousins do. Had the changes been with the oxidizer or tank design then I’d be more inclined to blame them for failure. Indeed current reports have shown that the motor has been found fully intact at the crash site, indicating that a mid air explosion was not the cause of the crash.

Investigators are now focusing on the events leading up to the crash, including the possibility that the wings were unlocked too early into their flight. SpaceShipTwo has an unique system for its re-entry, it’s wings fold up in a process called feathering that ensures it comes back down belly-first. Engaging this system is a 2 stage process, requiring the pilots to first unlock the wings and then engage the feathering process. Initial reports have suggested that the wings were unlocked during powered ascent although it’s still too early to say if that was the cause of the crash or not.

To his credit Richard Branson has committed himself to the project even in the face of this disaster which means we’ll still be seeing SpaceShipTwo make flights into space sometime in the future. This will definitely set them back but I’m sure that the new versions of the ship will ensure that an event of this nature cannot happen again. It’s an unfortunate reminder that things like this still carry some form of risk with them and those who dare to be on the frontiers like this really are risking their lives for our greater good.

Antares Rocket Explodes Shortly After Launch.

There’s numerous stories about the heydays of rocket engineering, when humanity was toying around with a newfound power that we had little understanding of. People who lived near NASA’s test rocket ranges reported that they’d often wait for a launch and the inevitable fireball that would soon follow. Today launching things into space is a well understood territory and catastrophic failures are few and far between. Still when you’re putting several thousand tons worth of kerosene and oxygen together then putting a match to them there’s still the possibility that things will go wrong and, unfortunately for a lot of people, something did with the latest launch of the Orbital Sciences Antares rocket.

The mission that it was launching was CRS Orb-3, the third resupply mission to the International Space Station using Orbital Sciences Cygnus craft. The main payload consisted mostly of supplies for the ISS including food, water, spare parts and science experiments. Ancillary payloads included a test version of the Akryd satellites that Planetary Resources are planning to use to scout near Earth asteroids for mining and a bunch of nano Earth observation satellites by Planet Labs. The loss of this craft, whilst likely insured against loss of this nature, means that all of these projects will have their timelines set back significantly as the next Antares launch isn’t planned until sometime next year.

NASA and Orbital Sciences haven’t released any information yet about what caused the crash however from the video footage it appears that the malfunction started in the engines. The Antares rocket uses a modified version of the Russian AJ-26 engine who’s base design dates back to the 1960s when it was slated for use in the Russian Moon shot mission. The age of the design isn’t an inherently bad thing, as Orbital Sciences have shown the rockets were quite capable of putting things into orbit 4 times in the past, however the fact that Antares is the only rocket to use them does pose some concerns. The manufacturer of the engines have denied that their engines were to blame, citing that it was heavily modified by Aerojet prior to being used, however it’s still probably too early to rule anything in or out.

One thing I’ve seen some people pick up on is the “Engines at 108%” as an indication of their impending doom. The above 100% ratings typically come from the initial design specifications which aim to meet a certain power threshold. Many engines exceed this when they’re finally constructed and thus any power generated above the designed maximum is designated in this fashion. For most engines this isn’t a problem, the Shuttle routinely ran it’s engines at 110% during the initial stages of takeoff, so them being throttled over 100% during the ascent stage likely wasn’t an issue for the engines. We’ll know more when NASA and Orbital Sciences release the telemetry however.

Hopefully both Orbital Sciences and NASA can narrow down the cause of this crash quickly so it doesn’t affect any of the future CRS launches. Things like this are never good for the companies involved, especially when the launch system only has a handful of launches under its belt. The next few weeks will be telling for all involved as failures of this nature are rarely due to a single thing and are typically a culmination of a multitude of different factors leading up to the unfortunate, explosive demise of the craft.

It did make for a pretty decent light show, though.

X-37B-returns-to-earth

The X-37B Returns.

It’s been a long time since I wrote about the X-37B, originally NASA’s but now the Department of Defense’s secretive space plane, and that’s mostly because there’s not been a whole lot to report.The secret nature of its mission means that no details about its payload are readily available and unlike the first time it was launched it’s been behaving itself, staying within its own orbit. Still that didn’t stop the Internet from going on a rampage of speculation, the highlight of it being the ludicrous idea that it was spying on China’s efforts in space. However over the weekend it returned from its orbit around the earth after a staggering 2 years on orbit.

X-37B-returns-to-earth

Now 2 years might not sound like a long time, especially when the Voyager satellites are pushing 35+ years, however for a craft of this type such a record is a pretty significant advancement. Most capsules and spacecraft that had downrange capacity (I.E. they can bring stuff back) usually have endurances of a couple weeks. Even the venerable shuttle could only last a couple weeks in orbit before things started to get hairy, even if it was docked to the International Space Station. With the X-37B able to achieve an endurance of 2 years without too much of a struggle is a pretty impressive achievement and raises some interesting questions about what its true purpose might be.

The official stance is that it’s a test platform for a whole host of new space technologies like navigational systems, autonomous flight and so on. Indeed from what we’ve seen of the craft it certainly contains a lot of these features as it was able to land itself without human intervention just last week. It’s small payload bay nods towards some other potential purposes (the favourite speculation is satellite retrieval) but it’s most likely just used to house special equipment that will be tested over the duration of the flight. There’s potential for it to house some observational equipment but the DoD already has multiple in-orbit satellites for that purpose and unlike spy satellites of the past (which used film) there’s no real need for downrange capabilities in them any more.

Unfortunately any technological innovations contained within the X-37B are likely to stay there as NASA hasn’t been involved in the X-37B project since it handed it over. It’s disappointing really considering that the DoD has a budget for space activities that equals NASA’s entire  budget and there’s definitely a lot of tech in there that they could make use of. Thankfully the private space industry is developing a lot of tech along similar lines so hopefully NASA and its compatriots will have access to similar capabilities in the not too distant future.

Maybe one day we’ll find out the true purpose of the X-37B much like we did with Hexagon. Whilst the story might be of the mundane the technology powering things like Hexagon never ceases to amaze me. If the X-37B is truly a test platform for new kinds of space tech then there’s likely things on there that are a generation ahead of where we are today. We may never know, but it’s always interesting to let your mind wonder about these things.

MIT Biosuit

The Spacesuit of the Future.

The spacesuit of today is much the same as the one of the last few decades. It’s an incredibly complicated device, combining all the systems necessary to keep an astronaut alive in the vacuum of space into a wearable package. However it’s not the easiest thing to use, often requiring extensive training not only to get familiar with it but also to train your muscles in how to use it. This is mostly because the design, which makes even the slimmest astronaut look something like the Michelin Man, is centred on ensuring that the pressure on the astronaut’s body is kept constant. This is currently done using an inflated lining which is quite restrictive however future designs, like the one from MIT, could provide the same protection whilst giving astronauts far more freedom.

MIT BiosuitOur bodies are accustomed to 1 atmosphere of pressure which, on the grand scheme of things, really isn’t that much. Indeed the difference between what we’d consider normal pressure and a complete vacuum is about the same as going 10m under water, something SCUBA divers do on a regular basis. However the trick is ensuring that that pressure stays consistent and constant over your entire body which is what led to the spacesuits today. Interestingly though it doesn’t matter how that pressure is generated so the traditional method can easily be replaced with something that’s mechanical in nature, which is what the new BioSuit from MIT seeks to do.

Instead of covering the astronaut’s body in what amounts to dozens of inflated pillows the BioSuit instead looks to use Shape Memory Alloys (think nitinol wire, if you’ve ever played with it) to provide the pressure. Essentially they’d have a full body tourniquet that would be embedded with this wire and, upon heating, it would contract around the astronaut’s body, providing the required pressure. How that pressure would be maintained is still a problem they’re working out (as keeping the astronaut heating constantly isn’t exactly ideal) but seem to be making good progress with various clip designs that would keep the suit tight over the duration of a spacewalk. They’d still have to have the traditional fish bowl on the head however as employing a system like this on the head wouldn’t really be feasible.

Whilst a suit like this wouldn’t provide complete freedom of movement (think a wetsuit that feels like it’s a size too small) it would be a vast improvement over the current design. Right now every time an astronaut wants to move a part of their body they essentially have to compress the protective bubble of gas in their suit, something which ends up being extremely tiring over the course of a long duration spacewalk. A design like this would likely require far less energy to manipulate whilst also allowing them to move a lot more freely, significantly reducing the time they’d need to spend outside.

For me though it’s just yet another piece of sci-fi making its way into reality as we’ve long dreamed of spacesuits that would be like a second skin to its wearers. Better still it’s being made with technology that we have available to us today and so no exotic material sciences is required to bring it to fruition. We likely won’t see any astronauts wearing them any time soon (the cycles for these things are on the order of decades) but as time goes on I think it’ll be inevitable that we’ll move to suits like this, just because of the vast number of advantages they offer.

 

bigelow-expandable-activity-module

Bigelow Sets Sights on the ISS in 2015.

After their initial flurry of activity launches over 7 years ago Bigelow Aerospace has become rather quiet, cancelling its 2 further prototypes and pursuing other activities. Presumably this was because they were a little ahead of their time as there just wasn’t any private (or public even) launch systems available to take would be space tourists to any of their modules. This, combined with them reducing their staff a couple years ago, meant that their requirements to deliver additional prototypes into space were dramatically reduced and they have instead been focusing on developing their technology with NASA. Now it seems, after almost a decade since their first launch, Bigelow will be making their return into space next year with the Bigelow Expandable Activity Module (BEAM).

bigelow-expandable-activity-module

The BEAM is probably derived from Bigelow’s Galaxy craft as it shares much of the same characteristics as that prototype was slated to have. Comparatively it’s a small part of the ISS, coming in with 16m³ worth of liveable volume, but it will contain all the elements necessary to support astronauts on orbit. For the most part it will be a demonstration and testing module, designed to measure things like leakage rates, radiation exposure levels and testing all the systems required to maintain it. The total mission duration is set for 2 years with the astronauts only entering it on occasion. The results from this will likely end up heavily influencing Bigelow’s next module, the behemoth of the BA330.

The total cost of the module is, by ISS standards, a steal coming in at just over $17 million. Although this doesn’t include the launch cost which, considering that it’s on the back of a Falcon-9, would likely be around $54 million putting the total cost at about $71 million. Still even if the further missions doubled the cost of the module you’d still be looking at an incredibly cheap way to add liveable volume to the ISS, something which is very much at a premium up there. More though it makes Bigelow’s Commercial Space Station seem that much more feasible as previously the amount of capital required just to get their modules into space was very cost prohibitive.

The BEAM module won’t be a one shot wonder, however. Bigelow plans to build another one of the modules to serve as an airlock on its future space station which would allow up to 3 astronauts (or more likely, space tourists) to space walk at a time. The ISS can currently handle only 2 astronauts at a time so it’s definitely a step up and I can imagine NASA acquiring another BEAM type module in the future if they were looking to expand the ISS’ operations. It might not sound like much but it could drastically reduce the amount of spacewalking time that astronauts have to undertake, which can sometimes be up to 10 hours at a time.

It’s great to see Bigelow back in the game again with firm timelines for delivering modules into space. The fact that they’ll be delivering capability to the ISS is even better as there’s huge potential for NASA to increase the lifetime of our only space station using Bigelow’s technology. Whilst no space launch date is ever set in stone I’m hopeful that we’ll see BEAM attached to the ISS in the not too distant future and, hopefully, the BA330 not too long thereafter.

Mars_Orbiter_Mission_-_India_-_ArtistsConcept

India’s Mars Orbiter Arrives Successfully.

When you think of space faring nations India probably isn’t one of the first to come to mind but they’re fast becoming one of the big players in terms of capability. Their space agency, the Indian Space Research Organisation (ISRO), began back in 1975 and has primarily focused on developing both launch and satellite capabilities. They made headlines back in 2008 with Chandrayaan-1 which was their first satellite to visit another celestial body. Every year since then has seen India launch multiple satellites every year, with the vast majority of them blasting to orbit aboard their very own Satellite Launch Vehicle brand of rockets. Last week saw them tick off another incredible milestone: their first interplanetary mission arriving successfully at its destination.

Mars_Orbiter_Mission_-_India_-_ArtistsConcept

The Mars Orbiter Mission (or Mangalyaan) is a comparatively small craft, weighing in at just on 500 kgs with only 15kg of that being dedicated to the various payloads it’s carrying. It’s primarily a technology demonstration mission, designed to provide a shakedown for the various systems required to maintain an interplanetary mission. Thus the payload of the mission is relatively simple, consisting of some atmospheric and particle sensors along with your standard imaging affair, although it does have the rather interesting capability of being able to radically change its orbit over time. Just the fact that India has joined the rather exclusive club of nations that have sent craft to Mars (3 total, now) would be noteworthy in of itself but there’s one more thing that makes MOM noteworthy.

The cost.

A typical Mars mission usually costs on the order of hundreds of millions of dollars, usually tickling the billion dollar mark when all things are considered. The Phoenix Lander, for instance, cost about $386 million and was considered to be quite cheap as it reused a lot of technology from other projects. MOM however was done for a total budget of $74 million including launch costs making it the cheapest interplanetary mission by any nation to date. A lot of this comes down to the simplicity of the mission however a big part of it is the fact that their launch vehicle costs around $19 million per launch, a cost that rivals even that of SpaceX’s Falcon launch system. If ISRO is able to keep their costs at this level there’s every chance that other nations will look to them to provide launch capabilities like this in the future.

Even though MOM is a simple craft it has the capability to provide extremely useful data like its predecessor Chandrayaan-1 did. The instruments might be few in number but the data they provide will function as a validation point for all the missions that have come before it, ensuring that the models we’ve developed for Mars are still valid. Having another set of eyes on Mars means that we’ll be able to catch many more of the geological phenomenon in action that we’ve seen in the past which will provide us even more insight into how its environment is changing, even today.

It always amazes me to see how rapidly space capability is being developed not only by private industry but also nation states. Exploring space is an incredibly expensive affair, one that seemingly doesn’t contribute to the nation’s economy directly, but the benefits always outstrip any cost that follows them. For India the ROI is going to be amazing as they’ve built a capability that took other nations decades and several billion dollars to achieve. I’m very excited to see what they accomplish next and whether or not they can continue the tradition of doing it far cheaper than anyone else.

First 3D Printer in Space

First Space Based 3D Printer Launched.

The boom that 3D printing has experienced over the past couple years has been nothing short of astonishing. The industry started off as predominately as a backyard engineering operation, designing machines that’s sole purpose was to be able to print another one of itself, but it quickly escalated into the market we know today. Indeed it seems even the most wildest predictions about how it would revolutionize certain industries have come true with leading engineering companies adopting 3D printers for both prototyping and full blown production developments. With that in mind it was only a matter of time before one of them was bound for the International Space Station and yesterday SpaceX launched the first 3D printer to be based in space.

First 3D Printer in Space

The printer, made by Made in Space, isn’t simply a stock standard model that’s been gussied up to work on the ISS. It’s been specifically designed to work in the microgravity environment in low earth orbit, undergoing thousands of simulated zero-g tests (presumably on one of NASA’s vomit comets). Whilst the specifications might not be exactly astounding when compared to some of the printers available down here on earth, it only has a print volume of 5cm x 10cm x 5cm with ABS plastic, it has the potential to be quite revolutionary for NASA, not to mention 3D printing at large.

One of the worst things about space travel is having to bring everything you need with you as there’s really no manufacturing capability to speak of in space. A 3D printer however provides the opportunity to ship up bulk supplies, in this case large reels of ABS plastic, which have a much greater density than the parts created with them will have. This drastically reduces the cost and complexity of shipping things up into space and provides a greater opportunity to create things in-orbit that might not be feasible to ship up otherwise. Of course whether or not 3D printing will be viable in space is another question, one which this device will attempt to answer.

There’s a lot of use for 3D printed plastic parts on the ISS, notably pretty much any small clip or connector on the interior of the craft, however I feel that the real usefulness of 3D printer will come when they can print with metal. Right now there’s no good solutions for doing that via the extruder (although there are a few out there using solder, which doesn’t have the greatest construction properties) as most use the powder bed sintering process. As you can probably guess having a bunch of powder in a microgravity environment isn’t going to work out too well so I’ll be interested to see how future space based 3D printers deal with metal and other materials.

It’s really quite exciting to see developments like this as there’s an incredible amount of opportunity for 3D printing to revolutionize several aspects of space travel. Indeed for long duration missions, one where component failure is a real risk, these kinds of in-orbit manufacturing capabilities are a necessity. Whilst we won’t be mass producing spacecraft parts in orbit any time soon these are the first few baby steps needed to developing that capability.

And wouldn’t you know it Planetary Resources already has partnerships in that direction. I should have guessed!