Posts Tagged‘launch’

autonomous_spaceport_drone_ship

Hitting a Bullseye From Orbit: SpaceX’s Automated Landing System.

Reducing the cost of getting things into orbit isn’t easy, as the still extremely high cost of getting cargo to orbit can attest. For the most part this is because of the enormous energy requirement for getting things out of Earth’s gravity well and nearly all launch systems today being single use. Thus the areas where there are efficiencies to be gained are somewhat limited, that is unless we start finding novel methods of getting things into orbit. Without question SpaceX is at the forefront of this movement, having designed some of the most efficient rocket engines to date. Their next project is something truly novel, one that could potentially drop the total cost of their launches significantly.

autonomous_spaceport_drone_ship

Pictured above is SpaceX’s Autonomous Spaceport Drone, essentially a giant flat barge  that’s capable of holding its position steady in the sea thanks to some onboard thrusters, the same many deployable oil rigs use. At first glance the purpose of such a craft seems unclear as what use could they have for a giant flat surface out in the middle of the ocean? Well as it turns out they’re modifying their current line of Falcon rockets to be able to land on such a barge, allowing the first stage of the rocket to be reused at a later date. In fact they’ve been laying the foundations of this system for some time now, having tested it on their recent ORBCOMM mission this year.

Hitting a bullseye like that, which is some 100m x 30m, coming back from orbit is no simple task. Currently SpaceX is only able to get their landing radius down to an area of 10KM or so, several orders of magnitude higher than what the little platform provides. Even with the platform being able to move and with the new Falcon rockets being given little wings to control the descent SpaceX doesn’t put their chances higher than 50% of getting a successful landing the first time around. Still whilst the opportunity for first time success might be low SpaceX is most definitely up to the challenge and it’ll only be a matter of time before they get it.

The reason why this is such a big deal is that any stage of the rocket that can be recovered and reused drastically reduces the costs of future launches. Many people think that the fuel would likely be the most expensive part of the rocket however that’s not the case, it’s most often all the other components which are the main drivers of cost for these launch systems. Thus if a good percentage of that craft is fully reusable you can avoid incurring that cost on every launch and, potentially, reduce turnaround times as well. All of these lead to a far more efficient program that can drive costs down, something that’s needed if we want to make space more accessible.

It just goes to show how innovative SpaceX is and how lucky the space industry is to have them. A feat like this has never been attempted before and the benefits of such a system would reach far across all space based industries. I honestly can’t wait to see how it goes and, hopefully, see the first automated landing from space onto a sea platform ever.

Orion Exploration Flight Test

NASA’s Orion Takes Flight.

Since before the Shuttle’s retirement back in 2011 NASA has been looking towards building the next generation of craft that will take humans into space. This initially began with the incredibly ambitious Ares program which was set to create a series of rockets that would be capable of delivering humans to any place within our solar system. That program was cancelled in 2010 by President Obama and replaced with a more achievable vision, one that NASA could accommodate within its meagre budget. However not all the work that was done on that program was lost and the Orion capsule, originally intended to ride an Ares-I into space, made its maiden flight last week signalling a new era for NASA.

Orion Exploration Flight Test

The profile for this mission is a fairly standard affair, serving as a shakedown of all the onboard systems and the launch stack as a whole. In terms of orbital duration it was a very short mission, lasting only 2 orbits, however that orbit allowed them to gather some key data on how the capsule will cope with deep space conditions. It wasn’t all smooth sailing for the craft as the mission was meant to launch the day before however a few technical issues, mostly to do with the rockets, saw NASA miss the initial launch window. However the second time around they faced no such issues and with the wind playing nice Orion blasted off for its twice around the world voyage.

When I first read about the mission I was curious as to why it was launching into such an unusual orbit. To put it in perspective the apogee (the point of the orbit furthest away from the earth) was some 5,800KM which is an order of magnitude higher than anything else in low Earth orbit. As it turns out this was done deliberately to fling the Orion capsule through the lower Van Allen belt. These belts are areas of potentially damaging radiation, something which all intersolar craft must pass through on their journey to other planets in our solar system. Since Orion is slated to carry humans through here NASA needs to know how it copes with this potential hazard and, if there are any issues, begin working on a solution.

The launch system which propelled the Orion capsule into orbit was a Delta-IV Heavy which currently holds the crown for the amount of payload that can be delivered to low Earth orbit. It will be the first and last time that we’ll be seeing Orion riding this rocket as the next flight, slated for launch towards the end of 2018, will be the Space Launch System. This is the launch system that replaced the Ares series of rockets when Obama cancelled the Constellation program and will be capable of delivering double the payload of the Delta-IV Heavy. It’s going to need that extra power too as the next Orion mission is an uncrewed circumlunar mission, something NASA hasn’t done in almost 5 decades.

It’s great to see progress from NASA, especially when it comes to its human launch capabilities. The Shuttle was an iconic craft but it simply wasn’t the greatest way to get people into space. The Orion however is shaping up to be the craft that might finally pull NASA out of the rut it’s found itself in ever since the Apollo missions ended. We’re still a while off from seeing people make a return to space on the back of a NASA branded rocket but it’s now a matter of when, and not if, it will happen.

Antares Rocket Explodes Shortly After Launch.

There’s numerous stories about the heydays of rocket engineering, when humanity was toying around with a newfound power that we had little understanding of. People who lived near NASA’s test rocket ranges reported that they’d often wait for a launch and the inevitable fireball that would soon follow. Today launching things into space is a well understood territory and catastrophic failures are few and far between. Still when you’re putting several thousand tons worth of kerosene and oxygen together then putting a match to them there’s still the possibility that things will go wrong and, unfortunately for a lot of people, something did with the latest launch of the Orbital Sciences Antares rocket.

The mission that it was launching was CRS Orb-3, the third resupply mission to the International Space Station using Orbital Sciences Cygnus craft. The main payload consisted mostly of supplies for the ISS including food, water, spare parts and science experiments. Ancillary payloads included a test version of the Akryd satellites that Planetary Resources are planning to use to scout near Earth asteroids for mining and a bunch of nano Earth observation satellites by Planet Labs. The loss of this craft, whilst likely insured against loss of this nature, means that all of these projects will have their timelines set back significantly as the next Antares launch isn’t planned until sometime next year.

NASA and Orbital Sciences haven’t released any information yet about what caused the crash however from the video footage it appears that the malfunction started in the engines. The Antares rocket uses a modified version of the Russian AJ-26 engine who’s base design dates back to the 1960s when it was slated for use in the Russian Moon shot mission. The age of the design isn’t an inherently bad thing, as Orbital Sciences have shown the rockets were quite capable of putting things into orbit 4 times in the past, however the fact that Antares is the only rocket to use them does pose some concerns. The manufacturer of the engines have denied that their engines were to blame, citing that it was heavily modified by Aerojet prior to being used, however it’s still probably too early to rule anything in or out.

One thing I’ve seen some people pick up on is the “Engines at 108%” as an indication of their impending doom. The above 100% ratings typically come from the initial design specifications which aim to meet a certain power threshold. Many engines exceed this when they’re finally constructed and thus any power generated above the designed maximum is designated in this fashion. For most engines this isn’t a problem, the Shuttle routinely ran it’s engines at 110% during the initial stages of takeoff, so them being throttled over 100% during the ascent stage likely wasn’t an issue for the engines. We’ll know more when NASA and Orbital Sciences release the telemetry however.

Hopefully both Orbital Sciences and NASA can narrow down the cause of this crash quickly so it doesn’t affect any of the future CRS launches. Things like this are never good for the companies involved, especially when the launch system only has a handful of launches under its belt. The next few weeks will be telling for all involved as failures of this nature are rarely due to a single thing and are typically a culmination of a multitude of different factors leading up to the unfortunate, explosive demise of the craft.

It did make for a pretty decent light show, though.

Chang'e 3

Chang’e 3 Launches: China’s First Luna Rover.

For a country that was barred from ever working with the leader in space technology the progress China has made in the last decade has been incredibly impressive. They’ve quickly gone from humble beginnings in 2003 where their first taikonaut made it into orbit to a fully fledged space station in 2013, showing that they have the technical expertise required to consistently attempt envelope pushing activities. Of course whilst the most interesting aspect of any space program is the manned activities (who doesn’t love seeing people in space!) there’s always the quiet sibling in the robotics departments, attempting missions that few humans will be able to attempt. I must admit that until today I was also ignorant of China’s robotic efforts in space but suffice to say they’re just as impressive as their human based accomplishments.

Chang'e 3China’s Chang’e program (the name of the Chinese Goddess of the Moon) is a series of lunar spacecraft tasked with creating highly detailed maps and models of the Moon’s surface with the intent that that data will be used for future manned missions. Chang’e 1 was launched back in 2007 and remained in lunar orbit for 2 years. It created the most accurate and detailed sufrace map of the moon to date and, once it was done, plummeted into the surface it just mapped to send up a spray of regolith that could be studied from here on Earth. It’s successor, Chang’e 2, was launched in 2010 and had similar capability (albeit with higher resolution instruments and a lower orbit) but instead of being plunged into the moon at the end of its mission it was instead sent out to do a flyby of asteroid 4179 Toutatis. Its current trajectory will eventually see it hit interstellar space however its likely it’ll run out of fuel long before that happens and the purpose of the extend mission is to validate China’s Deep Space Tracking network.

Chang’e 3, launched just yesterday, will be the first craft China has ever launched that will land on the Moon’s surface. For a first attempt it’s a fairly ambitious little project consisting of both a lander and a rover, whereas similar missions usually go for a lander first prior to attempting a rover. The lander is an interesting piece of equipment as it contains a RTG as a power source as well as an ultra-violet telescope, making it the first luna based observatory. Whilst it won’t be anything like the Hubble or similar space telescopes it will still be able to do some solid science thanks to its location and it makes the lander’s useful life much longer than it typically would be.

The rover is just as interesting, being roughly equivalent to the Mars Exploration Rovers (Spirit and Opportunity) in terms of size and weight. It can provide real time video back to Earth and has sample analysis tools on board. The most important instrument it carriers however is a radar on its base allowing it to probe the lunar surface in a level of detail that hasn’t been done before, giving us insights into the make up of the regolith and the crust beneath it. It will be interesting to see what its longevity will be like as its power source is its solar panels (unlike its parent lander) and the lack of atmosphere should mean they’ll remain clean for the forseeable future.

As of right now there’s another 2 more missions in the Chang’e line both of which have similar capabilities with the exception of Chang’e 5 which will be a lunar sample return mission. After that it’s expected that China will start to eye off manned lunar missions, starting with the traditional flag planting operations and then quickly escalating to a fully fledged moon base not long after. It’s quite possible that they’ll accomplish that within the next 2 decades as well as their past accomplishments show how quickly they can churn out envelope pushing missions, something that other space fairing nations have been lacking as of late.

Whilst it might not be of the same heights we saw during the cold war there’s definitely another space race starting to heat up, although this time it’s between the private space industry and China. Whilst it’s likely that China will win the race to the Moon and possibly Mars I can’t help but feel that the private industry isn’t too far behind. Heck, combine Bigelow Aerospace and SpaceX and you’ve already got the majority of the Chinese manned program right there! Still this does not detract from the accomplishments the Chinese have made and I only hope that eventually the USA changes its stance on co-operating with them.

MAVEN Orbiter

MAVEN Launches, The Mars Atmosphere Mystery Awaits.

Mars is by far the most studied planet that isn’t our own, having had 46 separate missions launched to it since the 1960s and is currently host to no less than 5 active missions both in orbit and on its surface. Those missions have taught us a lot about our red celestial sister, the most intriguing of which is that it was once not unlike Earth, covered in vast swaths of ocean which could potentially have been host to all sorts of life. Even more interesting is that while it’s little more than a barren desert that’s only notionally above vacuum it still contains water ice in non-trivial quantities, leading many to speculate that somewhere its liquid form must also exist. The process by which Mars transformed from a lush landscape like ours to the wasteland it is today is still shrouded in mystery and is something that MAVEN, NASA’s latest mission to Mars, is seeking to solve.

MAVEN OrbiterMAVEN successfully launched yesterday atop of an ATLAS V rocket and will spend the better part of a year transiting the distance between Earth and Mars. Its primary objective is to investigate the evolution of Mars’ atmosphere to try and ascertain the factors that influenced its demise. Since the current prevailing theory is that a cooling planetary core led to a loss of a protective magnetic field which then allowed the solar wind to slow strip away the atmosphere many of the instruments aboard the craft are geared towards measuring solar particles around Mars’ orbit. The rest of the instrumentation is focused on directly measuring Mars’ atmosphere which will then allow scientists to reconstruct a full picture of it and the influences working on it.

I believe this is also (and someone feel free to correct me on this) the reason for its slightly abnormal orbit for when it arrives at Mars. Instead of taking the usual approach of having a near circular orbit (like the Mars Reconnaissance Orbiter) it instead has a highly elliptical orbit with the closet approach being a mere 150KM above the surface whilst its furthest point is 6200KM out. This would allow the craft to get good measurements of the levels of solar particles as it gets closer to the surface and how that compares to it further out. Considering the orbital period will also only be 4.5 hours it would make for some rather exciting flybys if you were aboard that craft but then again that’s not an orbit you’d use if you had people on board.

The orbit also has the rather unfortunate effect of limiting one of MAVEN’s more long term capabilities: it’s link back to Earth. MAVEN has a 10Mbit/s link thanks to an updated Electra array which is almost twice as powerful as MRO’s. However due to the rather eccentric orbit it won’t be available as often which will limit the amount of data that can be passed back. This doesn’t just impact the satellite itself though as whilst the rovers on Mars can communicate directly to Earth it’s not a very fast connection, so most offload onto a local satellite for their more data hungry applications. Since it’s currently only an augment to the other fleet of satellites around Mars this isn’t too much of an issue although it could present some contention issues later on the track when the other satellites are retired.

The science that MAVEN will conduct on its planned 1 year mission will prove invaluable in determining just what happened to Mars’ atmosphere and, by extension, what the chances are of any life existing on its surface today. It will also provide infrastructure for future missions, allowing them to be more ambitious in the goals that they attempt to reach. For now though it’s 1 day into its long trip to our celestial sister, quietly awaiting the day when it can finally start fulfilling its purpose.

 

cygnus-cargo-logistics-spacecraft

Orbital Sciences Cygnus Launches, Heading For The ISS.

There was a long running joke that the International Space Station existed only as a place for the shuttle to go. Whilst that joke ignores the fact that the ISS wasn’t just an American creation it was true that the Shuttle really only had a single destination for the last decade or so of its life. Still it was pretty damn good at its job, both in terms of delivering payloads and its ability to ferry large crews and its retirement left a large hole in launch capabilities that is still yet to be filled. There have been many alternatives popping up however and the second fully privately funded one, the Orbital Sciences Cygnus, made its launch debut last week.

cygnus-cargo-logistics-spacecraftIn terms of capabilities the Cygnus is very similar to the Russian Progress craft with the initial versions able to deliver a payload of 2,000kg to the ISS. This is scheduled to be bumped up to 2,700kg after the first 3 vehicles as the craft and its associated launcher will be upgraded, giving it more significantly more interior volume as well. Much like all the other ISS cargo craft it does not have an automated docking capability and needs to be captured by CANADARM2 before being guided to one of the station’s ports. Additionally the Cygnus does not have any capability to reboost the ISS whilst it is docked, something which seems to be uniquely confined to the ATV (although the Progress can do it if required), and does not have any down range capability meaning it burns up on re-entry.

The first Cygnus craft launched late last week after a technical glitch caused a one day delay whilst a fix was developed. The launch itself was trouble free and it spent the weekend catching up to the ISS for a scheduled rendezvous today.  Unfortunately whilst the Cygnus was attempting to establish a direct data link with the ISS another glitch was encountered forcing it to abort the current docking attempt. This will delay any further attempts for another couple days due to the orbital mechanics involved but this will give Orbital Sciences enough time to create and test a fix so that the next attempt should be successful.

Just like SpaceX before it Orbital Sciences has a pretty aggressive schedule for successive flights with the next flight lined up for December this year and 3 to follow in 2014. Considering their pedigree with multiple launch systems under their belt this is somewhat expected but it’s still quite amazing to see just how quickly these private companies can move when compared to previous governmental based efforts. It will be interesting to see if they ever adapt the Cygnus to be a human rated craft as whilst they’ve never launched people before they’ve got much of the expertise needed to do so.

It’s great to see that NASA’s COTS program is doing so well, producing results that many believed would be impossible. Whilst they still haven’t bridged the launch capability gap that the Shuttle has left behind they’ve already demonstrated one major part of it and I know it won’t be long before the crewed capability is restored. I’m hopeful that this will enable NASA to continue focusing on the real envelope pushing ideas to further our capabilities in space, leaving the more rudimentary aspects of it to the private market. The future of private space travel is looking brighter by the day and I’m glad Orbital Sciences, with their incredible pedigree of delivering on space projects, has come along for the ride.

 

JAXA’s HTV-4 Launches With Talking Robot Aboard.

Japan’s H-II Transfer Vehicle (HTV) has been quite the little workhorse for the International Space Station, delivering some of the most valuable payloads to the floating space lab to date. I covered its maiden voyage all those years ago praising the craft’s capability to deliver standard payload racks in the absence of the Space Shuttle. Since then it’s gone on to do exactly that with the next 2 flights of the HTV delivering important cargo like Gradient Heating Furnace (used to create large, high quality crystals in microgravity) and the Aquatic Habitat which has allowed astronauts to study how fish live and breed over multiple generations in space. This weekend past saw the HTV launch for the 4th time from Yoshinobu Launch Complex at Tanegashima for a planed 35 day mission to the ISS.

YouTube Preview Image

I hadn’t covered any of the subsequent launches of the HTV, mostly because I didn’t find anything particularly interesting to write about them at the time, but looking over them I’m starting to regret my decision. In the 4 years since the HTV’s first launch every iteration of the craft has seen numerous improvements from routine things like improving the communications and avionics packages right through to improving the craft itself to be more lightweight. More interesting still is that JAXA has big plans for future iterations of the HTV, adding in the capability to return cargo to Earth (something that only the Soyuz and SpaceX Dragon are currrently capable of) by 2018 and, impressively, a crewed version that would be very similar to the Soyuz in terms of payload. The more ways we have of getting into space the better and I can’t think of a better craft to use as a base than the HTV for shipping humans up there.

However the HTV’s future isn’t what the space community is all abuzz about with this particular launch, it’s about the curious payload of a little robot called Kirobo. It’s a 34cm tall humanoid robot that’s been designed to communicate with its fellow human astronauts as well as people back on the ground. It’s equipped with voice and face recognition and can recognize emotions of the person its speaking to. It’s essentially designed to further investigate human-robot interactions, something that could prove to be pivotal in long haul flights to our nearest celestial neighbors. The ISS is no stranger to robot visitors either as they’ve been home to Robonaut 2 since early 2011 however it was more geared towards being a telepresence robot that could assist the crew with EVAs that required dexterous movement.

Alongside that plucky little robot companion will be 5.4 tonnes of other cargo for the ISS including support equipment for Kirobo, some cryogenic equipment and spare parts for the ISS itself. Interestingly there will also be 4 CubeSats brought along with it, two of which are ArduSats which are based off the Arduino development boards. Pico Dragon is a Vietnamese creation which will collect space and environment data as well as being a test bed for future satellite communication systems. TechEdSat, which as far as I can tell has no association with the Microsft TechEd brand, is designed to evaluate Space Plug-and-Play Avionics for the San Jose State University. They’re interesting because these usually tag along on other commercial flights and are deployed prior to the main payload although this isn’t the first time the ISS has launched CubeSats for others.

Organisations like JAXA give me a lot of hope for humanity’s space faring future as not only have they delivered a service routinely over the past 4 years they’ve pushed the envelope of their capability each time. The news that we could be seeing crewed vehicles from them within 10 years is incredibly exciting and the HTV will be a welcome addition to the growing family of launch services. They might not be as sexy as SpaceX but they’re doing a service that no one else can do and that’s something that we’ve got to appreciate.

Russian Proton Rocket Crashes Shortly After Take Off.

The Proton series of rockets are one of the longest running in the history of spaceflight. They made their debut back in 1965 when the first of them was used to launch the Proton series of scientific satellites which were super high energy cosmic particle detectors. Since then they’ve become the mainstay of the Russian space program being used for pretty much everything from communication satellites to launching the Soyuz and Progress crafts that service the International Space Station. In that time they’ve seen some 384 launches total making it one of the most successful launch platforms to date. However that number also includes 44 full and partial failures, including a few high profile ones that I blogged about a couple years back.

Unfortunately it appears that history has repeated itself today with another Proton crashing in a rather spectacular fashion:

YouTube Preview Image

To put this in perspective there’s been about 37 total launches of the Proton rocket since 2010 with 5 of them being either partial or full failures. This isn’t out of line with the current failure rate of the program which hovers around 11% but 4 of those have happened in the last 2 years which is cause for concern. The primary problem seems to be related to the upper stage as 3 of the recent 4 have been due to that failing which can be attributed to it being a revised component that only came into service recently. This particular crash however was not an upper stage failure as it happened long before that component could come online, indicating the problem is with the first stage.

The reasoning behind why this crash ended so spectacularly is pretty interesting as it highlights some of the design differences between the American and Russian designs. Most American launchers have a launch termination system built into them for situations like this, allowing the ground crew to self destruct the rocket mid air should anything like this happen. Russian rockets don’t have such systems and prefer to simply shut down the engines when failures like this happen. However for the safety of the ground crew the engines won’t shut off prior to 42 seconds after launch which is why you see this particular rocket continuously firing right up until it tears itself apart.

Additionally the Russian rockets use a rocket fuel mixture that consists of Unsymmetrical Dimethylhydrazine and Nitrogen Tetroxide. When these two compounds mix together they react in a highly energetic hypergolic reaction, meaning they burn without requiring any ignition source. This is where the giant orange fireball comes from as the aerodynamic stresses on the craft ruptured the fuel and oxidizer tanks, causing them to come into contact and ignite. Other rocket designs usually use liquid oxygen and kerosene which don’t automatically ignite and thus wouldn’t typically produce a fireball like that but the launch termination systems usually ensure that all the remaining fuel is consumed anyway.

Needless to say this doesn’t reflect well on Russia’s launch capabilities but it should be taken in perspective. Whilst the recent failure rate is a cause for concern it has to be noted that the R-7, the rocket that launches both the Progress and Soyuz craft to the ISS, has experienced 0 failures in the same time frame with a very comparable number of launches. It’s quite likely that the failure isn’t part of a larger systemic issue since we’ve had multiple successful launches recently and I’m sure we’ll know the cause sooner rather than later. Hopefully Russia can get the issue resolved before too long and avoid such dramatic incidents in the future.

Shenzhou 10

Shenzhou 10 Launches, Tiangong-1’s Final MIssion Begins.

It was just on a year ago today when China made history by becoming one of the few space faring nations to have a manned presence in space. Sure it wasn’t particularly long with the taikonauts staying on board for just over a week but it still demonstrated that they were quite capable of doing everything that other nations have. That’s made all the more incredible by the fact that they have essentially built this program from scratch in just over 20 years at a fraction of the cost. Ever since then I’ve been waiting to hear about their next (and final) mission to Tiangong-1 as that would demonstrate their ability to repeat what they’ve done.

Today they’ve done just that.

Shenzhou 10

Shenzhou-10 launched early this morning carrying with it 1 returning taikonaut (Nie Haisheng , Shenzhou-6) and 2 first comers including China’s second female taikonaut. The mission profile is much like the Shenzhou-9 with the crew spending 15 days in orbit with the majority of that being aboard Tiangong-1. Primarily they’ll be engaging in technological and scientific experiments but they’re also doing some outreach programs with Wang Yaping conducting some lectures live via television broadcast. Once their mission has been completed and the taikonauts returned to earth Tiangong-1 will be de-orbited in preparation for its upcoming replacement Tiangong-2.

I’ve said it several times before but it bears repeating, China is doing some really impressive work here and they’re doing it at an incredible pace when compared to previous endeavours to do the same. Sure, there’s a little bit of standing on the shoulders of giants here (thanks to their initial technology deal with Russia) but being able to launch a space station, perform unmanned missions and then 2 manned missions to it all within the space of 3 years is incredibly impressive. Tiangong-2, scheduled for launch for later this year, expands on the capabilities they developed further and should that prove successful that will pave the way for their first modular space station in the form of Tiangong-3.

Whilst I’m never going to be against more space stations the fact that the Tiangong series of craft exist can be directly traced back to the USA’s inability to work with China on anything space related. That may have made sense 3 decades ago but China has demonstrated pretty clearly that they’d have a lot to offer a joint space mission like the International Space Station. I’d even hazard a guess that the Tiangong/Shenzhou modules would be compatible with much of the ISS given their Russian technology roots or would likely only require minor modifications. Who knows, come 2020 when Tiangong-3 starts getting built we might see some collaboration from other nations but I don’t like our chances if the US gets involved again.

Despite that I’m all for the progress made by China as the more options we have for getting to and staying in space the better. The future of missions like this is looking to be increasingly private however, with companies and SpaceX and Orbital Sciences doing missions at a cost that even China says they can’t match. That’s a good thing however as it will allow them to focus on pushing the boundaries even further, taking on projects that will be truly awe inspiring.

 

PlayStation 4 Logo

Sony’s Early Press Stunt Seems To Have Done The Trick.

I don’t think I’m alone in saying that the timing of Sony’s announcement at the beginning of the year was a little surprising. Sure when they started inviting press to an event for an unnamed product we weren’t exactly surprised to find out it was the PlayStation 4 but by the same accounts we were also under the impression that it was nowhere as far along as the XboxOne was. Indeed I had gone on record several times saying that we’d likely see the new Xbox this year (which we will) and that the PS4 would follow sometime next year. It follows then that Microsoft would be the first to announce it but Sony beat them to the punch and, based on the reaction of the gamer community, this move appears to have benefitted them greatly.

PlayStation 4 Logo

Announcing a product early is always a risky endeavour as everyone will pick up on any half-baked ideas and descend upon them in a torrent of Internet rage. Indeed Sony copped quite a bit of criticism for doing just that as they failed to show the console (which feeds into the idea that it’s not done yet) and hand waved over a couple of the more important questions like backwards compatibility. Still the announcement set the tone for the next console generation with Sony putting games at the forefront and putting heavy emphasis on the features they’d built to enhance the gaming experience.

What did Microsoft bring to the table? Well if the following video is anything to go by:

YouTube Preview Image

The announcement had left me somewhat indifferent to Microsoft’s console, mostly thanks to the things that the above video highlights, and it appears that this sentiment has been echoed by many other gaming websites. Indeed whilst Microsoft may have made the right decision by broadening the console’s appeal through expanding its media offerings it’s certainly done nothing to endear them to the core crowd of Xbox gamers. You could leave the argument at that and still have a decent explanation for the backlash but honestly I think Sony’s press event set gamer’s expectations for the XboxOne long before Microsoft swaggered out with media-centric guns blazing.

Us gamers might have our various affiliations for different consoles, born from the days when we were allowed one and only one console which laid the groundwork for the fanboyism we see today, but we’re also astutely aware of what the competition is bringing to the table. Thus many of them would have been aware of what the PlayStation 4 was offering and would expect that Microsoft would have an answer to each and every feature that Sony had lauded at the PS4’s launch. Microsoft didn’t do this however, instead focusing on what they perceive as the major use case for the XboxOne: media consumption. Now this might not be too far out of left field, indeed more hours are spent watching Netflix than playing games on Xbox today, but I doubt that many of them were purchased solely for that. Indeed I believe many of them were bought by or for gamers primarily and the media integration was a nice add on for anyone else who wanted to use it.

Whether this translates into lost sales for Microsoft though will remain to be seen as whilst us gamers are a vocal bunch it’s entirely likely that consumers at large will view it as a solid DVR that also plays games. Like the Nintendo Wii before it this could have the potential to open up the Xbox to a much larger market, bypassing the vocal gamer community. It will be interesting to see how the sentiment develops over the next 6 months as that will determine if the XboxOne will retain its currently loyal gamer community or if they eschew it in favour of cementing their foothold as the center of your home entertainment system.