Posts Tagged‘mars’

Mars_Orbiter_Mission_-_India_-_ArtistsConcept

India’s Mars Orbiter Arrives Successfully.

When you think of space faring nations India probably isn’t one of the first to come to mind but they’re fast becoming one of the big players in terms of capability. Their space agency, the Indian Space Research Organisation (ISRO), began back in 1975 and has primarily focused on developing both launch and satellite capabilities. They made headlines back in 2008 with Chandrayaan-1 which was their first satellite to visit another celestial body. Every year since then has seen India launch multiple satellites every year, with the vast majority of them blasting to orbit aboard their very own Satellite Launch Vehicle brand of rockets. Last week saw them tick off another incredible milestone: their first interplanetary mission arriving successfully at its destination.

Mars_Orbiter_Mission_-_India_-_ArtistsConcept

The Mars Orbiter Mission (or Mangalyaan) is a comparatively small craft, weighing in at just on 500 kgs with only 15kg of that being dedicated to the various payloads it’s carrying. It’s primarily a technology demonstration mission, designed to provide a shakedown for the various systems required to maintain an interplanetary mission. Thus the payload of the mission is relatively simple, consisting of some atmospheric and particle sensors along with your standard imaging affair, although it does have the rather interesting capability of being able to radically change its orbit over time. Just the fact that India has joined the rather exclusive club of nations that have sent craft to Mars (3 total, now) would be noteworthy in of itself but there’s one more thing that makes MOM noteworthy.

The cost.

A typical Mars mission usually costs on the order of hundreds of millions of dollars, usually tickling the billion dollar mark when all things are considered. The Phoenix Lander, for instance, cost about $386 million and was considered to be quite cheap as it reused a lot of technology from other projects. MOM however was done for a total budget of $74 million including launch costs making it the cheapest interplanetary mission by any nation to date. A lot of this comes down to the simplicity of the mission however a big part of it is the fact that their launch vehicle costs around $19 million per launch, a cost that rivals even that of SpaceX’s Falcon launch system. If ISRO is able to keep their costs at this level there’s every chance that other nations will look to them to provide launch capabilities like this in the future.

Even though MOM is a simple craft it has the capability to provide extremely useful data like its predecessor Chandrayaan-1 did. The instruments might be few in number but the data they provide will function as a validation point for all the missions that have come before it, ensuring that the models we’ve developed for Mars are still valid. Having another set of eyes on Mars means that we’ll be able to catch many more of the geological phenomenon in action that we’ve seen in the past which will provide us even more insight into how its environment is changing, even today.

It always amazes me to see how rapidly space capability is being developed not only by private industry but also nation states. Exploring space is an incredibly expensive affair, one that seemingly doesn’t contribute to the nation’s economy directly, but the benefits always outstrip any cost that follows them. For India the ROI is going to be amazing as they’ve built a capability that took other nations decades and several billion dollars to achieve. I’m very excited to see what they accomplish next and whether or not they can continue the tradition of doing it far cheaper than anyone else.

curiosity-rover-mars-sand-dunes

Curiosity Falls Victim to Mars’ Treacherous Sand Traps.

It’s hard to believe that Curiosity, the successor to the incredibly successful Spirit and Opportunity Mars Exploration Rovers, has been on the martian surface for a total of 2 years now. Not only did it prove many of the complicated engineering processes behind getting such a large craft onto Mars’ surface it’s also greatly improved our understanding of our celestial neighbour. Like its predecessors Curiosity has already outlived its original mission parameters, although not by the same margin, and barring any catastrophic failures it’s highly likely that it will continue to be productive long into the future. However it did recently come dangerously close to falling victim to one of Mars’ most insidious features: the sand traps.

curiosity-rover-mars-sand-dunes

Curiosity’s current mission is to get to Mount Sharp, a 5KM tall peak which NASA scientists hope will have varying layers of rock they’ll be able to study as they climb up it. This would give a better insight into the evolution of Mars’ environment over the years, showing us how it transitioned from a once wet planet into the barren desert that it is today. However between Curiosity and the base of Mount Sharp there’s a trench of wavy sand that’s been dubbed the “Hidden Valley” and up until recently NASA scientists were just going to drive across it. However upon attempting to do this Curiosity has found that the sand is far more slippery than it first anticipated and thus it has been turned back whilst NASA figures out what approach they’ll take.

This is a very similar situation to the one that was eventually the downfall of Spirit. A lot of the surface of Mars looks visually similar however often the makeup of the underlying surface varies drastically. In both Curiosity’s and Spirit’s cases the soil lacked cohesion making it extremely difficult for the rovers to get traction. For Spirit this meant that it was no longer able to get its solar panels into the required angle for the martian winter, meaning it couldn’t generate enough electricity to keep its circuits functioning. If the same fate had befallen Curiosity however it wouldn’t matter as much (well apart from the obvious) as it’s internal power supply doesn’t rely on solar energy.

In terms of the mission profile it’s likely that this will probably just be a delay more than anything else as whilst there aren’t many ways out of the valley that Curiosity is currently in there are other potential paths it can take to get to Mount Sharp. In actual fact the delay might not be all bad news for Curiosity either as the return journey from the slippery slopes of Hidden Valley actually revealed a potential rock for further investigation, dubbed the Bonanza King. We’ll have to wait and see if anything interesting can be derived from that, however.

I guess things like this just go to show that no matter how well you prepare, nor how good the equipment is that you bring with you, it’s still entirely possible for old problems to come back and bite you. Thankfully this time around we were prepared for such things and we haven’t ended up with another stationary science platform. Hopefully this won’t delay Curiosity’s mission for too long as it’s proven to be incredibly valuable thus far and the Mount Sharp mission could really give us clarity over how Mars became the desolate place that it is today.

 

Pinnacle Rock Jelly Doughnut Mars

Mars’ Pinnacle Island Mystery Solved.

Whilst Mars might not be the most lively planet around, with any tectonic activity ceased since its core cooled and its atmosphere stripped by our sun, it’s by no means a dead planet. We’ve bore witness to many things that we didn’t initially expect to see like dust devils flitting across Mars’ vast plains to massive avalanches that sent plumes of dust billowing up into the martian atmosphere. Still these events aren’t particularly common and the rovers we’ve sent to explore our red sister don’t usually see drastic changes in their surrounding landscape. That was until very recently when a strange looking rock seemingly appeared out of no where, causing rampant speculation and excitement about its origins.

Pinnacle Rock Jelly Doughnut MarsThe rock itself is fairly interesting, being around 4cm wide and having what many have called a “jelly doughnut” like appearance thanks to its white crust containing a red centre. Further analysis just deepened the mystery as Pinnacle Island (as it was then dubbed) contained levels of sulphur and manganese far above that of any other rock formation previously analysed from Mars. Such composition suggests that this rock formed in the presence of water, adding fuel to the theory that Mars was once not unlike Earth, but its uniqueness didn’t help in identifying where it had come from and thus the theories began rolling in.

Many initially postulated that it was an ejecta from a nearby asteroid strike, something that would be very likely to dig up unusual specimens like this and land them at our feet. Unfortunately since this was the only potential piece of ejecta found anywhere nearby this was unlikely as something like that would have created much more debris than just a single rock. Most of the other explanations devolved into conspiracy theories and crazy talk although I will admit that it was entertaining to think that aliens would mess with us by placing single rocks in front of our rovers. Now, after many months of speculation, NASA has announced the source of the mysterious rock and it’s as intriguing as it is mundane.

In short Opportunity created it.

The before and after pictures that made the rounds on the Internet are actually from 2 different cameras. The first is from the high resolution, typically forward facing, camera responsible for most of the beautiful images we see beamed back. The after picture is from a reward facing camera which was taken a couple days after Opportunity had passed by that particular location. Between those two pictures Opportunity actually ran over a small rock, crushing it into pieces and sending this one fragment rolling down the hill it was climbing up. This gave rise to Pinnacle Island and it’s former compatriot Stuart Island both of which can bee seen a mere 3 feet from each other.

This was always going to be the most plausible explanation (anything else would’ve been a little too fantastical) but it was great to see the wider world captivated by this scientific mystery, even if the speculation got a little bit crazy at times. Whilst it won’t lead to any major scientific revelations or brilliant insights into Mars it did serve as a good exercise in figuring out the origin of strange happenings, even if the origin turns out to be us.

 

Printing Nutrition: It’s Closer Than I Thought.

As many know my experience with 3D printing has come with mixed results, as the kit I bought with 3 friends required more calibration than I was willing to do and my friend’s Solidoodle proved to be a reliable way to create the objects I needed. I’m still highly interested in the area (I was going to post a review of Microsoft’s 3D Builder but just never found the time to hook it all up) and I strongly believe that the commoditization of manufacturing at the small scale will prove to be revolutionary. One area of particular interest was the idea of a food printer, something that could potentially make a meal out of some base nutritional components.

As it turns out this might be closer than I first imagined (skip to 1 minute in for the good stuff):

YouTube Preview Image

NASA stated investigating the idea of 3D printing food a little while ago, investing a small amount of money into research to create a device capable of creating edible foodstuffs on the International Space Station. Primarily this was to fuel a longer term goal to provide food for an interplanetary trip to Mars as its believed that 3D printed food could dramatically reduce waste and improve efficiency with transported materials. Whilst this current demonstration appears to be limited to producing pizza (something which seems a perfect fit for a first run) NASA’s vision is for something far more general and it looks like they’re well on their way to achieving that.

It’s a big step considering that we’ve had printers capable of producing chocolate models for some time, but the leap to other food has proved somewhat elusive. It will likely be quite some time before it gets much more general than your run of the mill pizza however although some of the designs making the rounds are really quite impressive. Time will tell if they’ll ever become mass market devices but I can definitely see themselves finding a home in space stations and high end restaurants looking to create truly unique dishes.

Mercury vs Earth

Is Mars Our Best Bet For a Colony?

Whenever the idea of establishing a colony off-world comes to mind the first place many think of is Mars. Primarily this is due to Mars being the most similar of all the other planets to ours, having an atmosphere and land features that look very similar to some of our own. However that’s where the likeness ends as its lack of magnetic field has meant that its atmosphere has been stripped bar to a thin layer of carbon dioxide, taking all of the surface water along with it. Thus whilst it would seem like the best candidate for humans to establish themselves elsewhere in this solar system there are other potential sites that have distinct advantages over what Mars can provide.

Mercury vs EarthOne surprisingly good candidate for a potential human colony is Mercury. Now initially this would seem like a pretty bad idea as its surface temperatures regularly exceed several hundred degrees celsius and the only atmosphere to speak of is a tenuous layer is mostly made up of solar wind and vaporized surface material. However it’s close proximity to the sun gives it access to abundant solar power, orders of magnitude more than what is available on the surface of Mars. Considering that power is probably one of the biggest limiting factors for a colony and the size it can grow this advantage could prove invaluable, so long as the initial challenges could be overcome.

Probably the biggest thing that Mercury has going against it is the time it would take to get a mission there. Whilst we’ve got craft today capable of covering the distance in under 40 days or so its tight orbit around our sun makes it incredibly difficult to get into orbit with it. It’s not so much that it’s hard to do, more that the time typically required to transit to there with an approach that will get you into orbit takes on the order of years, not days. This would mean the development of systems to support humans for a sustained period in space which would open up other alternative locations for a human colony.

Interestingly such systems could be used to establish a colony on Venus, although not the type you’d think of. Whilst Venus’ surface is a hellish place where it rains metal it would be quite possible to create cloud cities that float around an area that’s much more hospitable to humans. Indeed the pressure at 50KM above the surface is the same as Earths and thanks to the dense, mostly carbon dioxide atmosphere a lifting gas that’s simply breathing air has a lifting power of 50 times that of helium on earth. The protections required then are far less strenuous than those required to get to Mercury initially and the dangers posed by the atmosphere are far less severe than that of a harsh vacuum.

Past these planets though are options start to get limited as whilst many moons of the gas giants of the outer solar system have an abundance of things like water or other useful materials they’re typically quite harsh environments, either being flooded with ionizing radiation or lacking any kind of atmosphere without the benefit of having high amounts of light to take advantage of. They’re essentially equivalent to space itself in that regard and whilst I love the idea of large human colonies in space there’s really no substitute for colonizing another planet.

For what its worth we’re likely going to see a Mars colony within our lifetimes, one that will likely be limited to a few one way pioneers or entrepreneurs looking to take advantage of the first new frontier in a century. The other options, whilst being only slightly more fantastical than that of a Mars colony, aren’t likely to happen any time soon as there needs to be much more ground broken in engineering terms before they become viable. Regardless of where it happens a human colony off our planet is fast becoming a necessity if we want to ensure the human race doesn’t have a single point of failure in our own planet.

 

MAVEN Orbiter

MAVEN Launches, The Mars Atmosphere Mystery Awaits.

Mars is by far the most studied planet that isn’t our own, having had 46 separate missions launched to it since the 1960s and is currently host to no less than 5 active missions both in orbit and on its surface. Those missions have taught us a lot about our red celestial sister, the most intriguing of which is that it was once not unlike Earth, covered in vast swaths of ocean which could potentially have been host to all sorts of life. Even more interesting is that while it’s little more than a barren desert that’s only notionally above vacuum it still contains water ice in non-trivial quantities, leading many to speculate that somewhere its liquid form must also exist. The process by which Mars transformed from a lush landscape like ours to the wasteland it is today is still shrouded in mystery and is something that MAVEN, NASA’s latest mission to Mars, is seeking to solve.

MAVEN OrbiterMAVEN successfully launched yesterday atop of an ATLAS V rocket and will spend the better part of a year transiting the distance between Earth and Mars. Its primary objective is to investigate the evolution of Mars’ atmosphere to try and ascertain the factors that influenced its demise. Since the current prevailing theory is that a cooling planetary core led to a loss of a protective magnetic field which then allowed the solar wind to slow strip away the atmosphere many of the instruments aboard the craft are geared towards measuring solar particles around Mars’ orbit. The rest of the instrumentation is focused on directly measuring Mars’ atmosphere which will then allow scientists to reconstruct a full picture of it and the influences working on it.

I believe this is also (and someone feel free to correct me on this) the reason for its slightly abnormal orbit for when it arrives at Mars. Instead of taking the usual approach of having a near circular orbit (like the Mars Reconnaissance Orbiter) it instead has a highly elliptical orbit with the closet approach being a mere 150KM above the surface whilst its furthest point is 6200KM out. This would allow the craft to get good measurements of the levels of solar particles as it gets closer to the surface and how that compares to it further out. Considering the orbital period will also only be 4.5 hours it would make for some rather exciting flybys if you were aboard that craft but then again that’s not an orbit you’d use if you had people on board.

The orbit also has the rather unfortunate effect of limiting one of MAVEN’s more long term capabilities: it’s link back to Earth. MAVEN has a 10Mbit/s link thanks to an updated Electra array which is almost twice as powerful as MRO’s. However due to the rather eccentric orbit it won’t be available as often which will limit the amount of data that can be passed back. This doesn’t just impact the satellite itself though as whilst the rovers on Mars can communicate directly to Earth it’s not a very fast connection, so most offload onto a local satellite for their more data hungry applications. Since it’s currently only an augment to the other fleet of satellites around Mars this isn’t too much of an issue although it could present some contention issues later on the track when the other satellites are retired.

The science that MAVEN will conduct on its planned 1 year mission will prove invaluable in determining just what happened to Mars’ atmosphere and, by extension, what the chances are of any life existing on its surface today. It will also provide infrastructure for future missions, allowing them to be more ambitious in the goals that they attempt to reach. For now though it’s 1 day into its long trip to our celestial sister, quietly awaiting the day when it can finally start fulfilling its purpose.

 

india-chandrayaan-1-spacecraft

What Water On The Moon Means For Space Exploration.

The moon is our closest celestial neighbour and as a consequence is by far one of the most studied celestial bodies. By all accounts it’s a barren wasteland, covered in numerous pot marks from the asteroids that have bombarded it over its lifetime. However the more we investigate it the more we find out that, whilst there’s almost no chance of life being present there, many of the resources that life depends on can be found there. Whilst we’ve known for a while that it would be possible to extract water from the regolith on the surface new observations from NASA’s Moon Mineralogy Mapper instrument aboard India’s Chandrayaan-1 have revealed that there might be actual water on the Moon, just waiting there for us to use.

india-chandrayaan-1-spacecraftThe initial implications of this are obvious. Water is one of the fundamental resources required for any human based space mission and the amount required usually has to be brought along for the ride. This means the payload capacity used for bringing water along can’t be used for other things, like additional supplies or more equipment, and presents a big challenge for long duration flights. Having a source on the Moon means that any potential bases or colonies established there would have much less reliance on resupply missions from Earth, something which is the primary limiting factor for any off-world colonies that we attempt to establish.

However that pales in comparison when compared to what water on the Moon means for space in general: it’s a primary component for rocket fuel.

Water’s basic composition is hydrogen and oxygen which are the components which power many of the liquid fuelled rocket engines that operate today. Of course in their bonded state they’re not a ready to use propellent exactly so a process is required to break those bonds and get those atoms separated. Thankfully such a process exists, called electrolysis,  which splits water down into its component gasses which can then be stored and later used to send rockets on their way. Of course such a process relies on a stable power source which would likely be some like of large solar array backed up by a large battery bank to last through the 2 week long darkness that regularly blankets half the surface.

The biggest challenge that many of the long duration or large payload missions face is the fact that they require more fuel. Carrying more fuel unfortunately also means carry more fuel and there’s points of diminishing returns where you’re spending far too much fuel just to get yourself out of our gravity well. Having a refuelling station or the Moon (or, even better, constructing and launch payloads from there) would mean that we would put larger payloads into space and then push them to the outer reaches of the solar system without having to waste as much fuel to get ourselves out of Earth’s gravitational influence.

Of course seeing this kind of technology implemented is some ways off as it seems like NASA’s next target will be a flag planting mission on Mars. Such technology would be quite applicable to Mars as well seeing as the soil there has a lot of trapped water (and there’s plentiful water ice pretty much everywhere but the equatorial region) but it’d be far more valuable if it was implemented on the moon. In either case I believe this is foundational technology that will be pivotal in humanity pushing itself to the far reaches of our own solar system and, maybe one day, beyond.

 

Dry Ice on Mars (and Earth).

Mars doesn’t have much of an atmosphere and the little it does have is rather hostile to life, being composed almost entirely of carbon dioxide with only small percentages of other gasses detectable. Due to the freezing temperatures that grip it constantly -60°C in summer and -125°C in winter a lot of this carbon dioxide ends up in its solid form, usually buried in the permafrost. Last year NASA even confirmed that Mars experiences dry snow a phenomena where frozen carbon dioxide falls to the surface in the form of snow not unlike the water based version we have on Earth. These are all mightily cool in their own regard but there was one particular interaction that came to my attention recently that’s just so much cooler because I realized I had first seen it for myself in my backyard.

YouTube Preview Image

I had heard about these gullies before and had always wondered how the heck they formed. It’s not like Mars is a completely dead planet, we’ve caught crazy things like avalanches happening on it, but things that look like they require surface water (or some other liquid) in order to create them are usually out of the question (at least for new features anyway). They’re even reminiscent of the sailing stones in Death Valley, although we’ve probably solved that mystery, but the lack of something at the end of them was the thing that was really puzzling.

Where I saw this in my backyard was a chance encounter with a couple blocks of dry ice that came with a delivery of frozen meals. They weren’t as big as the blocks in the movie above, although you can get them pretty easily if you know where to look, but of course the science nerd in my wife and I couldn’t resist playing with them in the kid pool we had set up. The result wasn’t exactly surprising since we’ve all seen this kind of stuff before but it was rather interesting to see the same principles at work on Earth just as they are on Mars.

YouTube Preview Image

The effect isn’t nearly as dramatic but you can definitely see the same carbon dioxide cushion at work which makes the block appear to glide on the surface rather than bobbing in it like water ice does. Another cool thing (which I didn’t show in the video) is when it’s placed just below the surface that same cushion will actually propel it straight to the bottom where it will pin itself and bubble like crazy until it’s all melted away.

I’d recommend doing this for yourself as it’s one thing to see it in a video and a completely different thing altogether to play around with it. Of course there’s a whole host of other things you can do, some which I’d probably not recommend (anything that involves a pressure vessel contains a certain amount of danger), but just watching it interact with other things is pretty satisfying.

Mars One Colony

The Race for Mars is Heating Up.

Bar our own planet Mars is by far the most studied planet in the solar system. Despite the fact that almost half the missions sent to Mars have ended in disaster we’ve still managed to do a whole lot of science  there and our most recent mission, the Curiosity rover, has managed to capture the attention of millions worldwide. The next logical step would then be to send ourselves over there as whilst robotic explorers are great at specific tasks there’s a whole host of other things we could do if we had a few pairs of boots over there. Such a mission has been on everyone’s minds ever since we first set foot on the Moon over 4 decades ago but progress towards achieving it has been slow, verging on non-existent.

This is not to say that there isn’t interest in doing this. NASA currently has a mandate set by the Obama government to reach Mars by 2030 a goal which they’re actively working towards with the Space Launch System. SpaceX has also expressed a keen interest in doing something similar, albeit without help from NASA, in a much more aggressive time frame. Russia has also alluded to a revamp in their space program, primarily aimed at modernizing their current fleet, which could see them establishing a moon base and possibly flying a mission to Mars. However none of these have created the stir that the fully private Mars One mission and that’s probably for good reason.

Mars One Colony

For the uninitiated Mars One is a non-profit organisation that has the extremely ambitious goal of landing 4 people on the surface of Mars by 2023. They believe they can do this at a total cost of about $6 billion for the first 4 ($4 billion for the second lot) and plan to raise a chunk of that change through making a reality TV show based around the recruitment process. This is where it gets interesting/controversial as the application process is open to anyone and has already garnered 78,000 applications from around the world. In case you’re wondering no, I’m not one of them because I’m quite sceptical that they, or anyone really, could pull off this feat with the budget they’re claiming. I’d do a detailed breakdown of why this is so but I came across this article this morning that does a far better job of explaining it than I’d do.

At the same time Buzz Aldrin has just released his new book Mission to Mars: My Vision for Space Exploration which is the culmination of his many decades of experience and ideas for getting us humans to our red sister. Whilst I haven’t had a chance to read it I do know of many of the things he’ll be discussing in it (like the Aldrin Cycler) and they’re solid, realistic goals that could be achieved by NASA in the time frames he sets out. If you’re doubting his credentials Buzz has a Phd in astronautics and has done a lot of work for NASA that’s still in use today. Whether or not NASA, or any other space faring nation for that matter, takes his advice under wing will remain to be seen but I’m sure the book will make great reading regardless.

All that being said I do get the feeling that we’re starting to see the beginnings of a mini-space race, one that’s taking place between the private space industry and the super power governments of the world. It’s anyone’s guess who will emerge the victor from this but I’m just thankful that there are multiple entities all driving towards the same goal as the more players we have in the field the more likely it is to happen. I’m sceptical that we’ll see humans on Mars within the next decade but we’re likely to push the boundaries of human exploration further than has ever been done before, fixing us firmly on a path to our celestial sister.

The Sun Sets on a Martian Day.

I’ll just put this here, a sunset on Mars as seen by the Curiosity rover:

YouTube Preview Image

I had one of those moments watching this video where I just considered the chain of events that led up to me being able to see this. There’s a robot on another planet, several million kilometers away, that’s beaming pictures back to Earth. Those pictures were then made available to the public via a vast, interconnected network that spans the entire globe. One person on that network decided to collate them into a video and make that available via said network. I then, using commodity hardware that anyone can purchase, was able to view that video. The chain of events leading up to that point seem so improbable when you look at as a completed system but they all exist and are all products of human innovation.

Isn’t that just mind blowingly awesome?