Posts Tagged‘solid’

Nitrogen’s Crystalline Formation is Astonishingly Cool.

Liquid nitrogen is a scientific staple that I’m sure we’re pretty much all familiar with. It’s a great demonstration of how the melting and boiling points can vary wildly and, of course, everyone loves shattering a frozen banana or two. However seeing the other stages of elemental gases is typically impossible as getting the required temperature is beyond the reach of most high school science labs. However there is a trick that we can use to, in essence, trick nitrogen into forming a solid: reducing the pressure to a near vacuum. The results of doing so are just incredible with the nitrogen behaving in some really peculiar ways:

The initial stages of the nitrogen transitioning into a solid is pretty standard with the reduced pressure resulting in the superheated boiling, plunging the temperature of the remaining liquid. The initial freezing is also something many will be familiar with as it closely mimics what happens when water freezes (although lacking water’s peculiar property of expanding when freezing). The sudden, and rather explosive, crystalline formation after that however took me by surprise as I’ve never really seen anything of that nature before. The closest thing I could think of was the fracturing of a Prince Rupert’s Drop although the propagation of the nitrogen crystalline structure seems to be an order of magnitude or two slower than that.

What really got me about this video is that it wasn’t done by a science channel or vlogger, it’s done by a bunch of chefs. Liquid nitrogen has been used in various culinary activities for over a century, mostly due to its extreme low temperatures which form much smaller ice crystals in the food that it chills. It should come as no surprise really as there’s been a huge surge in the science behind cooking with the field of molecular gastronomy taking off in recent decades. It just goes to show that interesting science can be done almost anywhere you care to look and its applications are likely far more wide reaching than you’d first think.

Fire Ants Exhibit Some Fascinating Properties in Large Groups.

Natural selection has given rise to some incredible things. The diversity of life on Earth is an ongoing testament to that, showcasing that life can sustain itself pretty much anywhere so long as there’s water present. What’s incredibly interesting to see is how parts of nature take on properties of things you wouldn’t necessarily think they would, like the planthopper with gears in its legs. It seems the more we investigate life here on Earth the more weird and wonderful behaviour we come across and none seems to be more stranger than the hive mentality of fire ants giving rise to a substance that’s neither liquid nor solid:

The research paper that this comes from is quite interesting as they performed a whole bunch of materials tests on the fire ants to see what the properties of the giant ball were like. Interestingly the fire ants, whether they’re alive or dead, exhibit properties of non-Newtonian fluids, specifically shear thinning (like when paint doesn’t drip off a brush). However the characteristics of the live fire ant ball don’t directly classify it as either a solid or a liquid although a similar non-live sample acted much more like a solid. That interesting property is most likely due to the way the ants rearrange themselves in response to stress but the actual mechanism of how they do that, especially in large numbers, is still something of a mystery.

It seems that this behaviour likely arose out of a particular selection pressure, namely flooding. The fire ants can bind themselves together in a ball or mat to form a raft that will float on water thanks to the large surface area relative to the fire ants weight. It’s the same principle that allows water skimmers and other insects to seemingly float on top of water, using the surface tension to provide them with buoyancy. The material properties that fire ant ball carries with it are likely a side effect of that adaptation, although there might be other pressure that led to it as well.

I’d totally go out and try this for myself but I value my hands far too much.