Posts Tagged‘rocket’

United Launch Alliance Announces Vulcan.

The past couple decades have seen the rise of a burgeoning private space industry, one that’s become dominated by companies founded by entrepreneurs who made their original fortunes in industries that couldn’t have been more different. What they’ve accomplished in that timeframe has been staggering making the long standing giants of this industry look archaic by comparison. However their track records for delivering in fields that these new companies can’t yet service is what has kept them going but the time is fast approaching when even their golden tickets will be up for auction. At least one company doesn’t appear to be resting on its laurels however with United Launch Alliance, a partnership between Lockheed-Martin and Boeing, announcing their cut price launch system called Vulcan.


As the banner’s imagery alludes to ULA’s Vulcan is an all-American vehicle, ditching the reliance on Russian built engines that have been the mainstay of their rockets for quite a while now. That’s caused some consternation as of late as the USA tries to wean itself off its reliance for Russia to provide access to space as well as the well publicized failures of a few choice engines. It’s hardly a surprising move given that many other US based companies are looking to bring their manufacturing back on-shore, both for quality control reasons as well as for publicity purposes. Regardless of where its made though what will really define this rocket is how it performs and how much it will cost.

ULA has said that the Vulcan will follow in the footsteps of the Delta-IV, offering multiple configurations from medium-lift all the way up to heavy-lift. The way this will be achieved will be through the use of different sized payload fairings as well as additional strap on solid rocket boosters, allowing the rocket to be configured to match the payload its delivering into orbit. ULA is being rather coy about the range of payloads that Vulcan will be able to service however if it’s anything like the system it will ultimately be replacing it will be a direct competitor to the future Falcon Heavy. At this point I’d usually make a quip about the SpaceX equivalent being vastly cheaper however ULA is aiming for a street price of $100 million per launch which isn’t too far off SpaceX’s projected price for their craft.

This rather extraordinary drop in price (down from some $350 million for a comparable launch on the Delta-IV) comes on the back of making the Vulcan reusable, eliminating a lot of the costs of rebuilding a rocket from scratch for every launch. However unlike the fully reusable system that SpaceX and others are pursuing (which, unfortunately, suffered another failure today) ULA is instead taking a piecemeal approach to reusability with the first part being a mid-air recovery of the engine section using a helicopter. Considering that the engines are among the most expensive components on rockets recovering them only makes sense and, potentially, has a higher chance of succeeding than other approaches currently do.

It’s good to see that the private space industry has been able to put some pressure on the long standing giants, forcing them to innovate or be pushed out of space completely. Whilst Vulcan might still be quite a few years away from seeing its first launch it shows that ULA recognise the position they’re in and are willing to compete their way out of it. Hopefully we’ll see some more details on the actual specifications of this craft sometime soon as depending on the different configurations (and their potential costs) this could even prompt SpaceX to rethink their approach. The result of an innovation war between those two giants can only mean great things for the space industry as a whole and, by extension, us as potential space faring beings.

Hitting a Bullseye From Orbit: SpaceX’s Automated Landing System.

Reducing the cost of getting things into orbit isn’t easy, as the still extremely high cost of getting cargo to orbit can attest. For the most part this is because of the enormous energy requirement for getting things out of Earth’s gravity well and nearly all launch systems today being single use. Thus the areas where there are efficiencies to be gained are somewhat limited, that is unless we start finding novel methods of getting things into orbit. Without question SpaceX is at the forefront of this movement, having designed some of the most efficient rocket engines to date. Their next project is something truly novel, one that could potentially drop the total cost of their launches significantly.


Pictured above is SpaceX’s Autonomous Spaceport Drone, essentially a giant flat barge  that’s capable of holding its position steady in the sea thanks to some onboard thrusters, the same many deployable oil rigs use. At first glance the purpose of such a craft seems unclear as what use could they have for a giant flat surface out in the middle of the ocean? Well as it turns out they’re modifying their current line of Falcon rockets to be able to land on such a barge, allowing the first stage of the rocket to be reused at a later date. In fact they’ve been laying the foundations of this system for some time now, having tested it on their recent ORBCOMM mission this year.

Hitting a bullseye like that, which is some 100m x 30m, coming back from orbit is no simple task. Currently SpaceX is only able to get their landing radius down to an area of 10KM or so, several orders of magnitude higher than what the little platform provides. Even with the platform being able to move and with the new Falcon rockets being given little wings to control the descent SpaceX doesn’t put their chances higher than 50% of getting a successful landing the first time around. Still whilst the opportunity for first time success might be low SpaceX is most definitely up to the challenge and it’ll only be a matter of time before they get it.

The reason why this is such a big deal is that any stage of the rocket that can be recovered and reused drastically reduces the costs of future launches. Many people think that the fuel would likely be the most expensive part of the rocket however that’s not the case, it’s most often all the other components which are the main drivers of cost for these launch systems. Thus if a good percentage of that craft is fully reusable you can avoid incurring that cost on every launch and, potentially, reduce turnaround times as well. All of these lead to a far more efficient program that can drive costs down, something that’s needed if we want to make space more accessible.

It just goes to show how innovative SpaceX is and how lucky the space industry is to have them. A feat like this has never been attempted before and the benefits of such a system would reach far across all space based industries. I honestly can’t wait to see how it goes and, hopefully, see the first automated landing from space onto a sea platform ever.

Antares Rocket Explodes Shortly After Launch.

There’s numerous stories about the heydays of rocket engineering, when humanity was toying around with a newfound power that we had little understanding of. People who lived near NASA’s test rocket ranges reported that they’d often wait for a launch and the inevitable fireball that would soon follow. Today launching things into space is a well understood territory and catastrophic failures are few and far between. Still when you’re putting several thousand tons worth of kerosene and oxygen together then putting a match to them there’s still the possibility that things will go wrong and, unfortunately for a lot of people, something did with the latest launch of the Orbital Sciences Antares rocket.

The mission that it was launching was CRS Orb-3, the third resupply mission to the International Space Station using Orbital Sciences Cygnus craft. The main payload consisted mostly of supplies for the ISS including food, water, spare parts and science experiments. Ancillary payloads included a test version of the Akryd satellites that Planetary Resources are planning to use to scout near Earth asteroids for mining and a bunch of nano Earth observation satellites by Planet Labs. The loss of this craft, whilst likely insured against loss of this nature, means that all of these projects will have their timelines set back significantly as the next Antares launch isn’t planned until sometime next year.

NASA and Orbital Sciences haven’t released any information yet about what caused the crash however from the video footage it appears that the malfunction started in the engines. The Antares rocket uses a modified version of the Russian AJ-26 engine who’s base design dates back to the 1960s when it was slated for use in the Russian Moon shot mission. The age of the design isn’t an inherently bad thing, as Orbital Sciences have shown the rockets were quite capable of putting things into orbit 4 times in the past, however the fact that Antares is the only rocket to use them does pose some concerns. The manufacturer of the engines have denied that their engines were to blame, citing that it was heavily modified by Aerojet prior to being used, however it’s still probably too early to rule anything in or out.

One thing I’ve seen some people pick up on is the “Engines at 108%” as an indication of their impending doom. The above 100% ratings typically come from the initial design specifications which aim to meet a certain power threshold. Many engines exceed this when they’re finally constructed and thus any power generated above the designed maximum is designated in this fashion. For most engines this isn’t a problem, the Shuttle routinely ran it’s engines at 110% during the initial stages of takeoff, so them being throttled over 100% during the ascent stage likely wasn’t an issue for the engines. We’ll know more when NASA and Orbital Sciences release the telemetry however.

Hopefully both Orbital Sciences and NASA can narrow down the cause of this crash quickly so it doesn’t affect any of the future CRS launches. Things like this are never good for the companies involved, especially when the launch system only has a handful of launches under its belt. The next few weeks will be telling for all involved as failures of this nature are rarely due to a single thing and are typically a culmination of a multitude of different factors leading up to the unfortunate, explosive demise of the craft.

It did make for a pretty decent light show, though.

Kerbel Space Program: Godspeed You Brave (Read: Insane) Green Men.

Games without a specific point and I don’t tend to mix very well. I mean we start off well, usually as I follow the main story line, but once there’s a lull I tend to start wandering off in random directions with a trail of destruction in my wake. This is Jerk Mode, the point in which I feel the current game has run its course and all that’s left for me to do is to make every NPC’s life in there a living hell. Many argue that this is the point of these style of games, you can make your own fun in it without having to feel obligated to play it a certain way, but for me once I hit that point that’s it for a while. Of course games that encourage you to do crazy things, like Kerbel Space Program does, tickle me in just the right way and since it’s all about space you know there was no way I was going to pass this up.

Kerbel Space Program Screenshot Wallpaper Title Screen

As I alluded to earlier Kerbal Space Program has no specific goal set out for you (unless you do a scenario), instead you’re given an unlimited budget and parts drawer from which you can create a wide variety of craft for launching your little green men into space. You could say the goal is to do this successfully without blowing them up and indeed whilst it is fun to send wave after wave of green men to their fiery deaths eventually you’ll tire of it and set your eyes on goals that are quite challenging to achieve. Even once you do that you’ll think of other things to challenge yourself and down the rabbit hole you’ll go.

Kerbel Space Program isn’t much of a looker, that’s for sure, but what it lacks in the visuals department it makes up for in spades with its simulation accuracy and wonderful background music. I make special note of the music because it’s eerily familiar to other simulation style games, particularly the ones from Maxis like The Sims and SimCity, which gives it this….air about it. It’s hard to describe but it just makes building a spaceship fun (although to be fair that’s fun regardless).

Kerbel Space Program Screenshot Wallpaper Vehicle Assembly Bay

There’s a couple short tutorial missions which I’d say are required for you to be able to grasp the basics as otherwise you’re just going to flounder around for hours while you wonder why your spaceship isn’t functioning like it should. It won’t teach you everything. indeed there’s a level of nuance to this game that you probably won’t appreciate until you’re on your 20th ship, but it’s enough for you to start experimenting with various designs. Additionally it gives you the run down on basic orbital mechanics, something you’re going to want to be familiar with after you get bored of making huge explosions.

The breadth of ship building components is really quite impressive with nearly all the different kinds of components I’d expect to see in a rocket engineer’s dream workshop. Thus the number of different rockets, space planes and other vehicles you can create is nigh on unlimited and depending on how you building them they’ll all have different capabilities. Initially I simply went for the good old fashioned Russian method of strapping as many of them together as I could, which works well to a point, but after a while I started to refine my designs until I started coming up with things that got the same result without resorting to things that made the simulation engine fall in a screaming heap (which happens when you do things in a really retarded way).

Kerbel Space Program Screenshot Wallpaper Launch

Now since there’s no explicit goal there’s really no penalty for failure which can lead you to try all sorts of weird and wonderful things to try and achieve the goals you’ve set out for yourself. I personally stayed within the realms of emulating current production launch systems, at least when I wasn’t deliberately trying to cause explosions, which seems to be one of the best ways to go about it. Checking out the community pages though reveals many weird and wonderful designs that are all quite functional, indeed some far moreso than any of the ones I’ve created. Most of my monstrosities ended up being too big for their own good, usually falling apart before reaching the Karman line, but I eventually managed to settle on a good design, one that started to take me places.

There’s few games out there that give you that true sense of accomplishment, you know where after completing an objective you feel like you’ve actually achieved something. Getting a craft into orbit sounds like an easy thing to do in Kerbel Space Program, I mean heck you can strap as many boosters together as you want, but therein lies the rub: brute force probably isn’t going to get you there. No in order to achieve something of that greatness you’re going to have to refine and finesse your design until you reach the point where you’re just able to make it. Once you do that however, things start to get a little crazy.

Kerbel Space Program Screenshot Wallpaper Earth Orbit

You’ll think that once you’ve gotten into orbit that you’ve done most of the hard work and from here it’s pretty easy to get to anywhere else should you have the desire. From an energy point of view this is correct, once you’re free of the gravity well the energy required to move yourself around is greatly decreased. However the first time you make it into orbit it’s quite likely you won’t have any fuel to do anything and even if you do trying to get into a proper transit orbit will likely see you on a trajectory headed into interstellar space rather than the nice transit orbit you hoped for. Of course you’re only a couple clicks away from trying again but it’s really easy to get attached to those craft that have made it to where they are.

Of course I’m only talking about a very small sub-section of the game as whilst getting into orbit and transiting around is all well and good there’s also a swath of other things you can do like landing on other heavenly bodies and launching robotic explorers and satellites. I have to admit I haven’t had a chance to try these out, I was heavily focused on getting into Mun orbit, but jut the fact that the components are there, waiting to be used tells me there’s so much more to Kerbel Space Program than you see at first glance. This is also not counting the modding scene which seems to be incredibly healthy.

Kerbel Space Program Screenshot Wallpaper Mun Orbit

Kerbel Space Program is still in alpha and so there’s bugs at every corner but since its still in development I can’t really fault them for that. Indeed it’s part of the charm as whilst it does a good job with orbital mechanics and the varying bits of rocket construction sometimes your ship will do things that just aren’t what you’d expect. Usually its emergent behavior from the interaction of so many different components which can lead to all sorts of strange things happening. I’m sure as time goes on many of these kinks will be worked out as reading long time fans of Kerbel Space Program shows the game has come quite a long way since it was first released into the world.

Kerbel Space Program is one of those awesome little gems where the quirks are what make it fun to play but the nuances of challenges it presents to you are so vast that it will take a lot of time to master. Your friends might not understand why it’s such a big deal that you got into Mun orbit, nor why your 2 stage launch system is a marvel of engineering, but you will and all of us fellow Kerbers will too. I’m far from done with Kerbel Space Program, indeed this is a game that I want to watch grow as it goes from plucky indie alpha to (hopefully) a fully fledged rocket building and launching simulator. It’s not for everyone, that’s for sure, but if you’re even the slightest bit curious about it then you know what you need to do.

Rating: withheld due to alpha status.

Kerbel Space Program is available on PC right now for $20.69. Total time spent playing was approximately 5 hours.

Could Skylon Be The First Single Stage to Orbit Craft?

The current way of accessing space isn’t sustainable if we want to make it as a space fairing species. Whilst the methods we use today are proven and extremely reliable they are amongst the most inefficient ways of lifting payload into orbit around our planet, requiring craft that are orders of magnitude larger than the precious cargo they carry. Unfortunately the alternatives haven’t been too forthcoming, due in part to nuclear technologies being extremely taboo and the others still being highly theoretical. Still even highly theoretical ideas can have a lot of merit especially if they have smaller aspects that can be tested and verified independently, giving the overall theory some legs to stand on.

I’ve talked before about the idea of creating a craft that uses only a single stage to orbit (SSTO), in essence a craft that has only one complete stage and conceivably makes extensive use of traditional aerodynamic principles to do away with a lot of the weight that conventional rockets have. My proposal relied on two tested technologies, the scramjet and aerospike engine, that would form the basis of a craft that would be the Model T equivalent for space travel; in essence opening up space access to anyone who wanted it. In all honesty such a craft seeing reality is a long way off but that doesn’t mean people aren’t investigating the idea of building a SSTO craft using different technologies.

One such company is Reaction Engines, a name that I was only marginally familiar with before. They’ve got a proposal for a SSTO craft called Skylon that uses a very interesting engine design that combines both an air breathing jet engine as well as a traditional rocket motors. The design recently passed its first technical review with flying colours and could see prototypes built within the decade:

They want the next phase of development to include a ground demonstration of its key innovation – its Sabre engine.

This power unit is designed to breathe oxygen from the air in the early phases of flight – just like jet engines – before switching to full rocket mode as the Skylon vehicle climbs out of the atmosphere.

It is the spaceplane’s “single-stage-to-orbit” operation and its re-usability that makes Skylon such an enticing prospect and one that could substantially reduce the cost of space activity, say its proponents.

The engine they’re proposing, called Sabre, has an extremely interesting design. At lower speeds it functions much like a normal jet engine however as speeds approach Mach 5, the point at which my hand waving design would switch to a scramjet, it continues to operate in much the same fashion. They do however employ a very exotic cooling system so that the engine doesn’t melt in the 1000+ degree heat that would be blasting the components and once Skylon is out of the atmosphere it switches to a normal rocket engine to finish off the job.

The issues I see, that face nearly all SSTO designs, is the rule of 6 for getting to orbit. The rule simply states that at Mach 6 at 60,000 feet you have approximately 6% of the total energy required to make it successfully to orbit. Skylon’s engines operate in the jet mode all the way up to Mach 5 to an altitude of 85,000 feet which is no small feet in itself, but it’s still a far cry from the total energy required. It is true though that the first stages of any rocket are the most inefficient and eliminating them by using the atmosphere for both oxidiser and thrust could prove to be a real boon for delivering payloads into orbit. Still whether this will be practical with Skylon and the Sabre engine remains to be seen but there are tests scheduled for the not too distant future.

Walking through unknown territory like this is always fraught with unknowns so it’s no wonder that the team at Reaction Engines has been met with such skepticism over their idea. Personally I’m still on the fence as their technology stack is still mostly unproven but I applaud their vision for wanting to build the first SSTO craft. I’d love to see the Skylon making trips to the International Space Station, effectively replacing the shuttle and extending the ISS’ lifetime but until we see some more proof that their concept works I’m going to be skeptical, but it won’t take much to make into a believer 😉

Falcon Heavy: SpaceX’s Rocket Can Beat Up Your Rocket.

I’ve been unfortunately slack with space based posts on my blog recently and whilst that’s mostly due to my attention being diverted away to other exploits I found it hard to find news or topics that I hadn’t already covered that I thought everyone would enjoy hearing about. Sure when it comes to space even the most hum-drum activities are still amazing feats are deserving of our attention but that doesn’t necessarily spark the creative muse inside me that’s responsible for me churning out a blog post every weekday. Thankfully however my favorite private aeronautics company SpaceX was determined to make waves today, and boy did they ever.

It all started with a single tweet last week where SpaceX teased that “Something big is coming” and released an accompanying 32 second video showing some of their previous accomplishments. Since their bread and butter is full launch systems many people speculated that this would be the announcement of a new rocket class, something bigger than that of the Falcon 9. Today saw the full announcement from Space that the “something big” was indeed their new rocket the Falcon Heavy and it’s set to disrupt the private space industry:

Falcon Heavy, the world’s most powerful rocket, represents SpaceX’s entry into the heavy lift launch vehicle category. With the ability to carry satellites or interplanetary spacecraft weighing over 53 metric tons (117,000 lb) to Low Earth Orbit (LEO), Falcon Heavy can lift nearly twice the payload of the next closest vehicle, the US Space Shuttle, and more than twice the payload of the Delta IV Heavy.

Falcon Heavy’s first stage will be made up of three nine-engine cores, which are used as the first stage of the SpaceX Falcon 9 launch vehicle. It will be powered by SpaceX’s upgraded Merlin engines currently being tested at the SpaceX rocket development facility in McGregor, Texas. SpaceX has already designed the Falcon 9 first stage to support the additional loads of this configuration, and with common structures and engines for both Falcon 9 and Falcon Heavy, development and operation of the Falcon Heavy will be highly cost-effective.

The numbers that SpaceX are throwing around are quite amazing with the Falcon Heavy being able to lift twice the payload weight of the Space Shuttle whilst costing an order of magnitude less per launch. Their specifications make multiple references to the closest competitor the DELTA IV Heavy which would be its most direct competitor citing that they can deliver twice the payload at a third of the cost. Whilst on paper their claim of double the payload rings true I’m still a bit skeptical on “third of the price” bit since the Falcon Heavy’s price range isn’t too far off the DELTA IV Heavy’s ($80~125 million vs $140~$170 million respectively), but it’s still a significant cost saving none the less.

As with all SpaceX rocket designs they are truly something to marvel at. Whilst I’m always get a bit worried when I see large clusters of engines (the Falcon Heavy has 27 engines total) SpaceX has shown they can get 9 of them to work in synchronization perfectly well in the past so I’m sure they’ll have no trouble scaling it up. What really intrigued me was the cross-feeding fuel system that the Falcon Heavy will employ. In essence it means that during its first stage all of the engines are drawing their fuel from the boosters on the side so that when it comes time for stage separation the core stage booster will still have an almost full tank. Couple this with the extraordinary mass ratio of 30, which is almost double that of the space shuttle, and it’s little wonder that the Falcon Heavy can achieve such extreme payload numbers whilst still boasting a ridiculously cheap price.

What’s truly exciting though is their planned production rate for these new rockets. Once in service SpaceX is planning to launch up to 10 of both the Falcon 9 and Falcon Heavy per year for a total of 20 flights per year. To put this in perspective the DELTA IV Heavy has only had 16 launches during its entire lifetime so for SpaceX to pursue such an aggressive launch schedule means that they think there’s a real demand for getting a whole lot of kit up into space, just not at the current price level. Indeed SpaceX will be the first company ever to offer payload delivery into space at the coveted $1000/lb mark, long held as the peak of conventional rocket technology. With SpaceX pursuing such aggressive economies of scale though it won’t be long before that price begins to come down, and that’s when things start to get interesting.

Whilst the cost of ticket to space is still well outside the reach of the everyman for many decades to come breakthroughs like the ones SpaceX are making a habit of releasing signal the beginning of the real space age for all mankind. The $1000/lb mark puts the cost of putting your average human into orbit at around $200,000 just on weight (probably triple that for a realistic cost) which is scarily close to Virgin Galactic’s initial ticket price for a 5 minute sub-orbital junket. As many aspects of getting people orbit become routine and the research costs are a long forgotten memory there’s really nothing stopping the price from coming down to be within the reach of those who would desire it. Sure we’re a long way off from seeing the kind of competition we see with the airlines today but the similarities between the early days of flight and the fledgling space industry are just too strong to ignore. The next decade will bring us some truly exceptional revolutions in technology and all of them will help to make the dream of a true space age for humanity come to fruition.

I really can’t express just how excited this makes me.

Single Stage to Orbit: The Model T of Space.

No matter which way you cut it space is still the playground of governments, large corporations and the worlds wealthy. The reasons behind this are obvious, the amount of effort required to get someone or something into space is enormous and past applications that result in either scientific or monetary gain there’s little interest to take the everyman up there. That has rapidly changed over the past few years with several companies now making serious investment in the private spaceflight sector. Now nearly anyone who wishes to make the journey out of Earth’s atmosphere can very well do so, a privilege that until today has been reserved for mere hundreds of people. Still we’re far off from space being just another part of everyday life like flying has become but that doesn’t mean the seeds of such things aren’t already taking hold. In fact I believe with the right investment we could well see the Model T Ford equivalent of space within the next few decades.

Right now all commercial and governmental space endeavours use some form of chemical rocket. They generate thrust by throwing their fuel out the back of them at extremely high speeds and whilst they’re by far the most energy efficient jet engines you can create they’re also one of the most fuel hungry and also require that the craft being propelled by them carry their oxidiser¹ with them. Putting this into perspective the Space Shuttle’s external tank (the giant rust coloured cylinder) carries around 6 times more oxidiser than it does fuel with it, to the tune of 630 tonnes. That’s about 30% of the total launch mass of a completed Space Shuttle launch system and this has caused many to look for alternatives that draw their oxidiser directly from the atmosphere, much like the engine in your car does today.

Most solutions I’ve seen that use the atmosphere to achieve orbital speeds rely on a technology called scramjets. From a design standpoint they look a lot simpler than it’s turbojet/turbofan predecessors as there’s no moving parts used to compress the air. Scramjets rely on extremely high speeds to do the compression for them, meaning that they can’t be operated at lower speeds, somewhere in the realm of Mach 6 for a pure scramjet design. This means that they need some kind of supplementary thrust for them to be able to function.

One such solution is a that of an aeropsike engine. Apart from looking like something straight out of science fiction aerospike engines differ from regular rocket engines in that they don’t use the traditional bell shaped exhaust nozzles that adorn nearly every rocket today. Instead they use a concave spike shape that in essence forms a bell with outside air pressure. This has the effect of levelling off the performance of the engine at all altitudes although they suffer at lower mach numbers due to the reduced pressure. Still they compliment scramjets quite well in that they can be used in both situations where the scramjet can’t function (vacuum and low speed) whilst still remaining more efficient than current rocket designs.

Both of these ideas have been proposed as base technologies that would be used in a single stage to orbit (SSTO) launch system. All orbital capable launch systems today are done in stages whereby part of the rocket is discarded when it is no longer required. The Space Shuttle for example is a two stage rocket shedding the SRBs whilst it is still within earth’s atmosphere. A SSTO solution would not shed any weight as it climbed its way into space and the main driver for doing so would be to make the craft fully reusable. As it stands right now there are no true reusable launch systems available as the only one that’s close (the Space Shuttle) requires a new tank and complete refurbishment between flights. A fully reusable craft has the potential to drastically reduce the cost and turnaround time of putting payloads into orbit, a kind of holy grail for space flight.

SSTO isn’t without its share of problems however. Due to the lack of staging any dead weight (like empty fuel tanks) are carried with you for the full duration of the flight. Nearly every SSTO design carries with it some form of traditional chemical rocket and that means that the oxidiser tanks can’t be elminated, even though they’re not required for the full flight. Additionally much of the technology that a SSTO solution relies on is either still highly experimental or has not yet entered into commercial use. This means anyone attempting to develop such a solution faces huge unknown risks and not many are willing to make that jump.

Despite all this there are those who are working on including these principals into up and coming designs. NASA recently announced a plan to develop a horizontal launcher that would use maglev based track to accelerate a scramjet plane up to the required mach number before launching it, after which it could launch small payloads into space:

As NASA studies possibilities for the next launcher to the stars, a team of engineers from Kennedy Space Center and several other field centers are looking for a system that turns a host of existing cutting-edge technologies into the next giant leap spaceward.

An early proposal has emerged that calls for a wedge-shaped aircraft with scramjets to be launched horizontally on an electrified track or gas-powered sled. The aircraft would fly up to Mach 10, using the scramjets and wings to lift it to the upper reaches of the atmosphere where a small payload canister or capsule similar to a rocket’s second stage would fire off the back of the aircraft and into orbit. The aircraft would come back and land on a runway by the launch site.

Such a system would significantly reduce the costs of getting payloads into orbit and would pave the way for larger vehicles for bigger payloads, like us humans. Whilst a fully working system is still a decade or so away it does show that there’s being work done to bring the cost of orbital transport down to more reasonable levels.

A SSTO system would be the beginnings of every sci-fi geek’s dream of being able to fly their own spaceship into space. The idea of making our spacecraft reusable is what will bring the costs down to levels that will make them commercially viable. After that point it’s a race to the bottom as to who can provide the spacecrafts for the cheapest and with several companies already competing in the sub-orbital space I know that competition would be fierce. We’re still a long way from seeing the first mass produced space craft but it no longer feels like a whimsical dream, more like an inevitability that will come to pass in our lifetimes. Doesn’t that just excite you? 😀

¹As any boy scout will tell you a fire needs 3 things to burn: fuel, oxygen and a spark. Rockets are basically giant flames and require oxygen to burn. Thus oxidiser just means oxygen which also lets rocket engines operate in a vacuum.

This is The Space Age.

Even though I only discovered a real driving passion for space a couple years ago I’ve always been fascinated with the night sky and the beauty that it holds. I spent many nights out on my parents farm just staring up at the sky that was littered with stars and punctuated by our celestial sister, the moon. Being an avid science fiction fan for as long as I can remember the thought of journeying into space was always something I dreamed about, hoping one day to visit alien worlds and maybe one day venturing to other stars.

My real passion was sparked by the idea that sometime very soon anyone who wanted to could travel to the final frontier. Suddenly my boyhood dreams of floating weightlessly out in the cold void of space were no longer a thing of fantasy, they were tangibly real. I spent hours upon hours researching the technology wanting to know every detail of how they did it. I found myself lost in a world that I had ignored for so long, a place where science fiction was becoming science fact right before my eyes. I then resolved myself to becoming a part of this anyway I could and all my actions since then have been focused towards supporting my end goal of escaping the earth’s gravity well.

However I never once thought that anything short of a large enterprise would be able to accomplish such a task that first inspired me down this path. The idea wasn’t foreign to me though as I’d always held the somewhat romantic idea of building my own spacecraft to get into orbit. I squarely place all the blame for this idea on my first ever encounter with Star Trek, which was in the form of the movie First Contact. Still it seems some people were far more inspired than I was by similar ideas and they’ve gone ahead and built their own spaceship:

Copenhagen Suborbital’s HEAT rocket and Tycho Brahe capsule ready to launch. Credit: Copenhagen Suborbital
It’s something like the movie “Astronaut Farmer,” but this is for real. And it’s in Danish. Copenhagen Suborbitals,headed by Kristian von Bengtson and Peter Madsen, hope to launch the world’s first amateur-built rocket for human spacetravel. As of this writing, the launch countdown clock on the Copenhagen Suborbitals’ website reads 7 days and 12 hours, which would put the launch on August 30 at about 1300 GMT. This upcoming flight will be an unmanned test flight, but if all goes well, Madsen hopes to be inside the single-passenger capsule named Tycho Brahe for a manned flight in the near future. They have a sea-launch site on the Baltic Sea near Bornholm, Denmark, and their HEAT 1-X rocket is ready to go.

The team has been building their rocket since about 2004. Copenhagen Suborbitals is a non-profitendeavor, based entirely on sponsors and volunteers. Their mission: launch a human being into space. If they are successful, Denmark would become only the fourth nation to send a human into space. But this project is completely private – no national funds have been used. “We are working fulltime to develop a series of suborbital space vehicles – designed to pave the way for manned space flighton a micro size spacecraft,” said Madsen and von Bengtson on their website.

It’s this kind of endeavour that just leaves me gobsmacked at the ingenuity and dedication that we humans are capable of. Running the entire operation on donations and volunteer time would make you think that such a project would never get the legs needed to actually design, build and test a rocket capable of carrying someone into space. They’ve done what I had considered to be firmly out of the reach of the everyman but their work shows that we’ve really transitioned into the space age, where those with the drive to do so can build their very own space ship.

The craft itself is something to marvel at. Looking like a tiny version of many of the larger launch systems available they take the interesting option of having the single passenger of the craft standing up. All human carrying spacecraft to date have had their passengers sitting down or laying supine. This is because the forces acting on you as you launch can be quite hefty and the human body can take a lot more force when it’s strapped down than when you’re standing up. However for Copenhagen Suborbitals the choice to have the passenger stand up means the rocket can be quite a lot slimmer. This does mean that the thrust of the rocket had to be scaled back so that the forces on the passenger were reduced, but they’ll still be pulling a hefty 4Gs.

For propulsion they use a hybrid rocket motorsimilar to the ones found in Virgin Galactic’s SpaceShipOne and SpaceShipTwo. These are arguably the defacto choice for cheap and small space endeavours as they have many of the characteristics of more expensive engines (restartable, throttling) at a fraction of the cost. Copenhagen’s engine differs from Virgins in that its oxidizer is liquid oxygen rather than nitrous oxide which is interesting as LOX requires cryogenic storage, far more complicated than N20. Still LOX would provide a better specific impulse so the choice was probably made for performance reasons (I can’t seem to find the reasoning behind the switch on their site).

With the launch scheduled for just a few days from now I can’t wait to see how this rocket performs and I wish them all the best in the first full test. It’s projects like these that reaffirm my passion for space and inspire me to chase my dreams, however ambitious they may seem. With such talented people working on these problems and solving them in such interesting and varied ways I know we’re already well into the space age and the next decade will only see things get better.

Damn it’s a good time to be alive 😀

Excuse Me, My Space Armadillo Awaits.

It seemed like last year was the year of the space shysters with a fair few questionable companies coming out of no where and making large claims about putting people into space. I launched a volley of blogtastic skepticism at a few of the more vocal ones who have consequently not reared their heads again since their initial press flurry. Still there was a lot of progress since then with SpaceShipTwo making its debut and SpaceX successfully launching its Falcon 1 twice into orbit around earth. This year however hasn’t seen anyone else attempt to make a splash in the private space market, that was until now.

I’m going to go out on a limb here and say that the majority of people reading this blog will be familiar with the name John Carmack. For those who aren’t he’s somewhat of a game industry legend having being involved in the computer games industry for well over 20 years and his fame was made with such classic titles as Commander Keen, Doom and Quake. He’s well respected as being extremely talented and dedicated to the games that he produces, something that seems to have disappeared from so many game companies once they hit the big time. About 10 years ago after getting tired of turbo charging Ferraris¹ he set up a company called Armadillo Aerospace and set about developing rocket technologies in much the same fashion as he did developing game. He also went up against Scaled Composites for the Ansari X-Prize, albeit with about 10% of their budget.

For the most part though they’ve kept from making any broad media statements and have spent much of their time developing their lunar lander vehicles. The past 2 years have seen them win 2 prizes in the Nothrop Gruman Lunar Lander Challenge and they’ve been heavily involved in the new extreme sport called the Rocket Racing League. You’d then be forgiven for thinking that they’d given up on the aspirations that they once held when they were competing for the X-prize competition because really, nothing they’ve said or done thus far has shown any progress towards putting people into space.

You can then imagine my surprised when this little gem turned up in my feed reader:

Space Adventures is going to use an Armadillo Technologies rocket to launch amateur astronauts 62 miles into the sky. Nothing new, except that they will do it for half the price of Virgin Galactic‘s ticket, and in a real rocket!

Yes, an actual rocket launching vertically, not a glorified spaceplane like SpaceShipTwo. A real rocket, launched vertically. Clear the tower, godspeed, and all that. You know, like the real astronauts with the right stuff in the right places. And then, five minutes on the edge of space, and down you go. Almost like Alan Shepard in his Freedom 7—but hopefully with a lot less Gs—instead of playing a snob version of Chuck Yeager in Rutan’s spaceplane.

Before I rip into Diaz for being an ignorant jerk I just want to say how awesome this development is. If you take a look at some of the videos of the Armadillo craft in action (aaahhhh ignore this one) you’ll see why it will be so impressive to have these guys lifting people into space. Their crafts are very well designed and you can see the control software at work, vectoring the thrust ever so slightly to keep the entire craft upright and level. It’s akin to balancing a broomstick on your hand, except on the other end of the broom there’s about a ton of spacecraft and enough explosives to make even the most recluse pyromaniacs giddy.

There’s also the design of the craft to consider, it’s a Vertical Take Vertical Landing (VTVL) craft. For those who’ve gone into space there’s usually only 2 ways to get back down: you glide back ala SpaceShipOne and the Shuttle or you plummet like a rock with a special set of parachutes to stop you, landing either at sea (much more comfortable) or on land. Armadillo’s craft however will use its rockets² to do what’s called a soft landing, firing them several times to slow down and then using them to hover slowly down for landing. Using rockets to land really hasn’t been done on Earth because well, the lovely thick atmosphere that we have is quite apt at slowing you down. Additionally if you’re going to soft land you need to carry the required fuel to land with you up into orbit. As well all know weight is king in space endeavours and the less weight you can take up with you the better.

Then there’s the price, $102,000. Whilst that’s being spruiked as half the cost of a flight on SpaceShipTwo it neatly ignores the fact that both of those are intial prices. Branson and Rutan have both said on numerous occasions that those prices would come down over time and their target price was somewhere in the $10~20,000 region. Of course that price won’t be met for quite a long time but after the initial round of 200 flights they stated the cost would come down to $100,000, equivalent to Armadillo’s price. The good news is that with 2 very serious competitors vying for the sub-orbital space tourism industry us as the consumers will ultimately win out with cheaper prices, bringing a trip into space into the realm of the everyman.

Don’t think I forgot about you Diaz. What, pray tell, do you think are the requirements for something to be a rocket? Because for both SpaceShipOne and the Armadillo craft both of them are rockets, no question. The only difference between them is the propellant they use with one being nitrous oxide and rubber and the other some liquid (probably LOX/kerosene). Is the difference then that you’re launched from the ground rather than a captive carry plane? Pffft don’t get me started, since the current American space program owes its success to the X-15 experiments which were done in almost exactly the same way as SpaceShipOne. It doesn’t matter how you cross that line in the sand that we’ve called space, you won’t really be an astronaut on either (you’ll be a spaceflight participant), unless of course you’re the one actually flying it (doubt it buddy).You might think that SpaceShipOne is a snob spacecraft but the facts remains, it’s a rocket and it pays more homage to the true roots of space travel than you care to be aware of.

If there’s something that gets me excited it’s when talented people, like those at Armadillo Aerospace, announce that they’re going to do something as ambitious as putting people into space. It speaks volumes that despite the economic disasters that plagued our world that the current generation of space pioneers have not lost sight of their end goals. The next decade is going to be one of a revolution in the realm of private space activities and every piece of news like this just makes me ever more confident that one day space travel will become as common for the everyman as taking a plane.

Of course we’ll have to have spaceport security then, but I’d be willing to put up with that after spending a glorious few minutes floating above our beautiful earth 🙂

¹I don’t have a link for this quote but I can distinctly remember an interview where he said he needed something more exciting than buying a Ferrari and turbo charging it. At the time I hated him for the statement (young and jealous at the time!) but if I was in the same situation I’d be doing pretty much the same thing.

² I’m trying to find an official source for the VTVL capability of this craft but I’m coming up blank. Looking at the design it’s pretty clear that this thing is designed to land “ass first” and there doesn’t seem to be anyone saying that it will use parachutes to come back to earth. The closest I have so far is this Slashdot comment, but I’d be much happier if I could get some official word on how their craft plans to land on terra firma.