Posts Tagged‘rover’

ExoMars TGO Launches, Scouting for Future Rover Mission.

With the number of missions we’ve sent to Mars you might wonder why we keep going back there. For starters it’s very similar to Earth in many respects and is thus a great candidate for comparison, especially when it comes to the origins of life. Additionally it’s relatively easy to get into a good orbit for observation, Mars Curse not withstanding. Finally the atmosphere is far more hospitable for robotic exploration than say Venus or other planets or moons, allowing us to send craft to the surface that last years rather than minutes or hours. There’s also still a lot we can learn from our red sister and to that end the European Space Agency has launched ExoMars; a multi-part mission specifically targeted at identifying signs of life on Mars.

515e16df7a61efd118f328a0a793b373

ExoMars is an incredibly ambitious mission that’s made up of 3 major parts. The first is the Trace Gas Orbiter (TGO), a robotic probe that will map out Mars’ atmosphere with a specific view towards detecting both biological and geological activity. Flying along with the TGO is the Schiaparelli Entry, Descent and Landing Demonstrator Module (EDM Lander), a 600KG craft that will descend to the surface of Mars’ 4 days prior to TGO’s final orbital insertion maneuvers. Finally the last craft, yet to be launched, is a 310kg solar powered rover due to launch in 2018. All these craft combined make up the greater ExoMars mission and all have a key part to play in determining whether or not life was, or is, present on Mars.

The TGO’s payload consists of 4 main instruments, 2 of which are dedicated to atmospheric analysis (NOMAD and ACS), one for surface imaging (CaSSIS) and one to analysis the surface for hydrogen in the form of water or hydrated minerals (FREND). NOMAD and ACS will work together to do spectral analysis on Mars’ atmosphere in incredible detail, allowing us to detect even the smallest trace of biological activity. These devices will primarily operate in what’s called “Solar Occultation” mode which means that they look back at the sun through Mars’ atmosphere in order to do their analysis. They also have other modes however they present challenges in getting acceptable signal to noise ratios. CaSSIS is essentially a high resolution camera capable of images with a resolution of 4.5m per pixel (MRO’s HiRISE by comparison is about 2.5m per pixel). FREND is a neturon detector that can sense the presence of hydrogen in up 1m of Martian soil, giving us insight into the presence of water or hydrogenated minerals.

The EDM lander is a demonstration craft, one that will showcase and validate numerous pieces of technology required to successfully land the future planned rover. 4 days prior to TGO’s arrival at Mars the EDM Lander will separate and begin its descent to the surface of Mars. Initially it will slow itself using aerobreaking, reducing its speed from over 21,000km per hour to something more manageable. Then it will deploy drogue chutes to slow its descent speed even further, using doppler radar and other on board measuring devices to judge its trajectory. The final stages will then consist of a pulse-fired liquid rocket engines to slow itself further before shutting down completely 2 meters above the ground. The final impact will be absorbed by a specially designed crushable surface that will ensure the lander does not get damaged. All of these technologies are key in ensuring that the future rover can be delivered safely to the Martian surface.

The final piece of the puzzle is the ExoMars rover which will be substantially bigger than the MERs (Spirit and Opportunity) but about a third of the size of Curiosity. It will be solar powered using a 1200W array and capable of moving 70m per Martian day. On board will be numerous instruments with the major payloads focused primarily on the detection of life on Mars. The largest of these is the Mars Organic Molecule Analyser (MOMA) which will be able to conduct very high sensitivity analysis on samples collected from the surface of Mars. Its landing site is not yet determined however, that will be decided by the results gained from TGO’s time in orbit before the rover launches.

Suffice to say ExoMars will be one of the comprehensive search for life beyond our Earth ever conducted and it’s incredibly heartening to see the ESA undertaking this even after NASA pulled its support for it some time ago. For now it’ll be all quiet for at least 7 months as the TGO and EDM make their way to Mars. Towards the end of the year however we should start to get some exciting results and, if all goes well, a few happy snaps from the EDM as it descends to the surface.

Audi Backed Part Time Scientists Take Aim at Google’s Lunar X-Prize.

Announced back in 2007 Google’s Lunar X-Prize was an incredibly ambitious idea. Originally the aim was to spur the then nascent private space industry to look beyond low earth orbit, hoping to see a new lunar rover land on the moon by 2012. As with all things space though these things take time and as the deadline approached not one of the registered teams had made enough meaningful progress towards even launching a craft. That deadline now extends to the end of this year and many of the teams are much closer to actually launching something. One of them has been backed by Audi and have their sights set on more than just the basic requirements.

CYJ17aBUEAAhpar

The team, called Part Time Scientists (PTS), has designed a rover that’s being called the Audi Lunar Quattro. Whilst details are scant as to what the specifications are the rover recently made a debut at the Detroit Auto Show where a working prototype was showcased. In terms of capabilities it looks to be focused primarily on the X-Prize objectives, sporting just a single instrument pod which contains the requisite cameras. One notable feature it has is the ability to tilt its solar panels in either direction, allowing it to charge more efficiency during the lunar day. As to what else in under the hood we don’t yet know but there are a few things we can infer from what their goals are for the Audi Lunar Quattro’s mission.

The Google Lunar X-Prize’s main objective is for a private company (with no more than 10% government funding) to land a rover on the moon, drive it 500m and stream the whole thing in real time back to earth in high definition. It’s likely that the large camera on the front is used for the video stream whilst the two smaller ones either side are likely stereoscopic imagers to help with driving it on the lunar surface. PTS have also stated that they want to travel to the resting site of the Lunar Roving Vehicle left behind by Apollo 17. This likely means that much of the main body of the rover is dedicated to batteries as they’ll need to move some 2.3KM in order to cover off that objective.

There’s a couple other objectives they potentially could be shooting for although the relative simplicity of the rover rules out a few of them. PTS have already said they want to go for the Apollo Heritage Prize so it wouldn’t be a surprise if they went for the Heritage Prize as well. There’s the possibility they could be going for the range prize as if their rover is capable of covering half the distance then I don’t see any reason why it couldn’t do it again. The rover likely can’t get the Survival Prize as surviving a Lunar night is a tough challenge with a solar powered craft. I’d also doubt its ability to detect water as that single instrument stalk doesn’t look like it could house the appropriate instrumentation to accomplish it.

One thing that PTS haven’t yet completed though, and this will be crucial to them succeeding, is locking in a launch contract. They’ve stated that they want to launch a pair of rovers in the 3rd quarter of 2017 however without a launch deal signed now I’m skeptical about whether or not this can take place. Only 2 teams competing for the Lunar X-Prize have locked in launch contracts to date and with the deadline fast approaching it’s going to get harder to find a rocket that has the required capabilities.

Still it’s exciting to see the Lunar X-Prize begin to bear fruit. The initial 5 year timeline was certainly aggressive but it appears to have helped spur on numerous companies towards achieving the lofty goal. Whilst it might take another 5 years past that original deadline to fulfill it the lessons learned and technology developed along the way will prove invaluable both on the moon and back here on earth. Whilst we’re not likely to see a landing inside of this year I’m sure we’ll something the year afterwards. That’s practically tomorrow, when you’re talking in space time.

New Antenna Design Could Vastly Improve Mars Rover Communications.

The way we get most of the scientific data back from the rovers we currently have on Mars is through an indirect method. Currently there are four probes orbiting Mars (Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter and MAVEN) all of which contain communications relays, able to receive data from the rovers and then retransmit it back to Earth. This has significant advantages, mostly being that the orbiters have longer periods with which to communicate with Earth. Whilst all the rovers have their own direct connections back to Earth they’re quite limited, usually several orders of magnitude slower. Whilst current rovers won’t have their communication links improved for future missions having a better direct to Earth link could prove valuable, something which researchers at the University of California, Los Angeles (UCLA) have started to develop.

santos-ucla-mars-attenna

The design is an interesting one essentially being a flat panel of phased antenna array elements using a novel construction. The reasoning behind the design was that future Mars rover missions, specifically looking towards the Mars 2020 mission, would have constraints around how big of an antenna it could carry. Taking this into account, along with the other constraint that NASA typically uses X-band for deep space communications like this, the researchers came up with the design to maximise the gain of the antenna. The result is this flat, phased array design which, when tested in a prototype 4 x 4 array, closely matched their simulated performance metrics.

With so many orbiters around Mars it might seem like a better direct to Earth communications relay wouldn’t be useful however there’s no guarantees that those relays will always be available. Currently mission support for most of those orbiters is slated to end in the near future with the furthest one out slated for decommissioning in 2024 (MAVEN). Since there’s a potential new rover slated to land sometime in 2020, and since we know how long these things can last once they’ve landed, having better on board communications might become crucial to the ongoing success of the mission. Indeed should any of the other rovers still be functioning at that time the new rover may have to take on board the relay responsibilities and that would demand a much better antenna design.

There’s still more research to be done with this particular prototype, namely scaling it up from its current 4 x 4 design to the ultimate 16 x 16 panel. Should the design prove to scale as expected then there’s every chance that you might see an antenna based on this design flying with an orbiter in the near future. I’m definitely keen to see how this progresses as, whilst it might have the singular goal of improving direct to Earth communications currently, the insights gleaned from this design could lead to better designs for all future deep space craft.

Curiosity Smells Farts on Mars.

There’s many ways to look for life on other planets. Most of our efforts currently focus on first finding environments that could sustain life as we know it which is why the search (and subsequent discovery) of water on other celestial bodies is always a cause for celebration. Once we’ve got a target though the search needs to become more nuanced as we have to seek out the clues that life leaves behind or the blocks that build it. For life as we know it one of the first things we can look for is the presence of organic molecules, the essential parts that make up all of life as we know it. One of these such molecules is methane, reknown for being a component in flatulence, something which Curiosity recently detected on Mars.

PIA19088

Methane, and other organic compounds, don’t necessarily require life in order to form however their presence does indicate that there was an environment favourable to life at one point in time. For Mars this was some time ago, on the order of billions of years, and so it’s highly unlikely that any remaining methane is due to microbial activity. However there has to be some local source of methane near Curiosity as it detected a ten fold spike in the amount of methane in Mars’ atmosphere, something which it has never seen before. Additionally Curiosity detected other organic molecules in a rock it drilled into recently, indicating that there was a time when organics must have been prevalent across the entire surface of Mars.

The discovery was made sometime ago however the researchers needed to rule out the possibility that the reading was caused by organics that were trapped in Curiosity’s sensors from Earth. Things like this happen more often than you think as whilst we take every precaution to ensure that there isn’t any contaminations on craft like this it’s inevitable that the sensors, all of which are highly complex machines, end up having stray molecules trapped within them. Because of that however we’ve gotten pretty good at identifying when things came along for the ride and this particular methane spike didn’t originate from Earth.

The organics in the rock are most intriguing however as they tell a story of Mars’ atmosphere that stretches back to the point where it still held liquid water on its surface. The ratio of isotopes in the water (which I talked about yesterday in regards to the discoveries Rosetta has made) indicates that the mineral formed some time after Mars lost much of its water, if we assume that the water on Mars and Earth came from the same place. However the ratio is also radically different to the water in Mars’ atmosphere today indicating that it formed before Mars lost the rest of its surface water. It will be interesting to see how this sample compares to other places around Mars as it will paint a detailed picture of the planet’s surface over time.

It seems like it will be only a matter of time before we find a large source of water on Mars, buried deep beneath the surface somewhere. From there we’ll have an exciting period of analysis to determine if microbial life still thrives on what appears to be a dead planet. Unfortunately that’s not likely to happen any time soon, at least not until we get people there anyway, but with NASA recommitting themselves to such an endeavour it might come sooner than many first thought. Honestly I can’t wait for that to occur as it will shed so much light on how life evolves and, possibly, what it can become.

Curiosity Falls Victim to Mars’ Treacherous Sand Traps.

It’s hard to believe that Curiosity, the successor to the incredibly successful Spirit and Opportunity Mars Exploration Rovers, has been on the martian surface for a total of 2 years now. Not only did it prove many of the complicated engineering processes behind getting such a large craft onto Mars’ surface it’s also greatly improved our understanding of our celestial neighbour. Like its predecessors Curiosity has already outlived its original mission parameters, although not by the same margin, and barring any catastrophic failures it’s highly likely that it will continue to be productive long into the future. However it did recently come dangerously close to falling victim to one of Mars’ most insidious features: the sand traps.

curiosity-rover-mars-sand-dunes

Curiosity’s current mission is to get to Mount Sharp, a 5KM tall peak which NASA scientists hope will have varying layers of rock they’ll be able to study as they climb up it. This would give a better insight into the evolution of Mars’ environment over the years, showing us how it transitioned from a once wet planet into the barren desert that it is today. However between Curiosity and the base of Mount Sharp there’s a trench of wavy sand that’s been dubbed the “Hidden Valley” and up until recently NASA scientists were just going to drive across it. However upon attempting to do this Curiosity has found that the sand is far more slippery than it first anticipated and thus it has been turned back whilst NASA figures out what approach they’ll take.

This is a very similar situation to the one that was eventually the downfall of Spirit. A lot of the surface of Mars looks visually similar however often the makeup of the underlying surface varies drastically. In both Curiosity’s and Spirit’s cases the soil lacked cohesion making it extremely difficult for the rovers to get traction. For Spirit this meant that it was no longer able to get its solar panels into the required angle for the martian winter, meaning it couldn’t generate enough electricity to keep its circuits functioning. If the same fate had befallen Curiosity however it wouldn’t matter as much (well apart from the obvious) as it’s internal power supply doesn’t rely on solar energy.

In terms of the mission profile it’s likely that this will probably just be a delay more than anything else as whilst there aren’t many ways out of the valley that Curiosity is currently in there are other potential paths it can take to get to Mount Sharp. In actual fact the delay might not be all bad news for Curiosity either as the return journey from the slippery slopes of Hidden Valley actually revealed a potential rock for further investigation, dubbed the Bonanza King. We’ll have to wait and see if anything interesting can be derived from that, however.

I guess things like this just go to show that no matter how well you prepare, nor how good the equipment is that you bring with you, it’s still entirely possible for old problems to come back and bite you. Thankfully this time around we were prepared for such things and we haven’t ended up with another stationary science platform. Hopefully this won’t delay Curiosity’s mission for too long as it’s proven to be incredibly valuable thus far and the Mount Sharp mission could really give us clarity over how Mars became the desolate place that it is today.

 

Mars’ Pinnacle Island Mystery Solved.

Whilst Mars might not be the most lively planet around, with any tectonic activity ceased since its core cooled and its atmosphere stripped by our sun, it’s by no means a dead planet. We’ve bore witness to many things that we didn’t initially expect to see like dust devils flitting across Mars’ vast plains to massive avalanches that sent plumes of dust billowing up into the martian atmosphere. Still these events aren’t particularly common and the rovers we’ve sent to explore our red sister don’t usually see drastic changes in their surrounding landscape. That was until very recently when a strange looking rock seemingly appeared out of no where, causing rampant speculation and excitement about its origins.

Pinnacle Rock Jelly Doughnut MarsThe rock itself is fairly interesting, being around 4cm wide and having what many have called a “jelly doughnut” like appearance thanks to its white crust containing a red centre. Further analysis just deepened the mystery as Pinnacle Island (as it was then dubbed) contained levels of sulphur and manganese far above that of any other rock formation previously analysed from Mars. Such composition suggests that this rock formed in the presence of water, adding fuel to the theory that Mars was once not unlike Earth, but its uniqueness didn’t help in identifying where it had come from and thus the theories began rolling in.

Many initially postulated that it was an ejecta from a nearby asteroid strike, something that would be very likely to dig up unusual specimens like this and land them at our feet. Unfortunately since this was the only potential piece of ejecta found anywhere nearby this was unlikely as something like that would have created much more debris than just a single rock. Most of the other explanations devolved into conspiracy theories and crazy talk although I will admit that it was entertaining to think that aliens would mess with us by placing single rocks in front of our rovers. Now, after many months of speculation, NASA has announced the source of the mysterious rock and it’s as intriguing as it is mundane.

In short Opportunity created it.

The before and after pictures that made the rounds on the Internet are actually from 2 different cameras. The first is from the high resolution, typically forward facing, camera responsible for most of the beautiful images we see beamed back. The after picture is from a reward facing camera which was taken a couple days after Opportunity had passed by that particular location. Between those two pictures Opportunity actually ran over a small rock, crushing it into pieces and sending this one fragment rolling down the hill it was climbing up. This gave rise to Pinnacle Island and it’s former compatriot Stuart Island both of which can bee seen a mere 3 feet from each other.

This was always going to be the most plausible explanation (anything else would’ve been a little too fantastical) but it was great to see the wider world captivated by this scientific mystery, even if the speculation got a little bit crazy at times. Whilst it won’t lead to any major scientific revelations or brilliant insights into Mars it did serve as a good exercise in figuring out the origin of strange happenings, even if the origin turns out to be us.

 

Chang’e 3 Launches: China’s First Luna Rover.

For a country that was barred from ever working with the leader in space technology the progress China has made in the last decade has been incredibly impressive. They’ve quickly gone from humble beginnings in 2003 where their first taikonaut made it into orbit to a fully fledged space station in 2013, showing that they have the technical expertise required to consistently attempt envelope pushing activities. Of course whilst the most interesting aspect of any space program is the manned activities (who doesn’t love seeing people in space!) there’s always the quiet sibling in the robotics departments, attempting missions that few humans will be able to attempt. I must admit that until today I was also ignorant of China’s robotic efforts in space but suffice to say they’re just as impressive as their human based accomplishments.

Chang'e 3China’s Chang’e program (the name of the Chinese Goddess of the Moon) is a series of lunar spacecraft tasked with creating highly detailed maps and models of the Moon’s surface with the intent that that data will be used for future manned missions. Chang’e 1 was launched back in 2007 and remained in lunar orbit for 2 years. It created the most accurate and detailed sufrace map of the moon to date and, once it was done, plummeted into the surface it just mapped to send up a spray of regolith that could be studied from here on Earth. It’s successor, Chang’e 2, was launched in 2010 and had similar capability (albeit with higher resolution instruments and a lower orbit) but instead of being plunged into the moon at the end of its mission it was instead sent out to do a flyby of asteroid 4179 Toutatis. Its current trajectory will eventually see it hit interstellar space however its likely it’ll run out of fuel long before that happens and the purpose of the extend mission is to validate China’s Deep Space Tracking network.

Chang’e 3, launched just yesterday, will be the first craft China has ever launched that will land on the Moon’s surface. For a first attempt it’s a fairly ambitious little project consisting of both a lander and a rover, whereas similar missions usually go for a lander first prior to attempting a rover. The lander is an interesting piece of equipment as it contains a RTG as a power source as well as an ultra-violet telescope, making it the first luna based observatory. Whilst it won’t be anything like the Hubble or similar space telescopes it will still be able to do some solid science thanks to its location and it makes the lander’s useful life much longer than it typically would be.

The rover is just as interesting, being roughly equivalent to the Mars Exploration Rovers (Spirit and Opportunity) in terms of size and weight. It can provide real time video back to Earth and has sample analysis tools on board. The most important instrument it carriers however is a radar on its base allowing it to probe the lunar surface in a level of detail that hasn’t been done before, giving us insights into the make up of the regolith and the crust beneath it. It will be interesting to see what its longevity will be like as its power source is its solar panels (unlike its parent lander) and the lack of atmosphere should mean they’ll remain clean for the forseeable future.

As of right now there’s another 2 more missions in the Chang’e line both of which have similar capabilities with the exception of Chang’e 5 which will be a lunar sample return mission. After that it’s expected that China will start to eye off manned lunar missions, starting with the traditional flag planting operations and then quickly escalating to a fully fledged moon base not long after. It’s quite possible that they’ll accomplish that within the next 2 decades as well as their past accomplishments show how quickly they can churn out envelope pushing missions, something that other space fairing nations have been lacking as of late.

Whilst it might not be of the same heights we saw during the cold war there’s definitely another space race starting to heat up, although this time it’s between the private space industry and China. Whilst it’s likely that China will win the race to the Moon and possibly Mars I can’t help but feel that the private industry isn’t too far behind. Heck, combine Bigelow Aerospace and SpaceX and you’ve already got the majority of the Chinese manned program right there! Still this does not detract from the accomplishments the Chinese have made and I only hope that eventually the USA changes its stance on co-operating with them.

The Sun Sets on a Martian Day.

I’ll just put this here, a sunset on Mars as seen by the Curiosity rover:

I had one of those moments watching this video where I just considered the chain of events that led up to me being able to see this. There’s a robot on another planet, several million kilometers away, that’s beaming pictures back to Earth. Those pictures were then made available to the public via a vast, interconnected network that spans the entire globe. One person on that network decided to collate them into a video and make that available via said network. I then, using commodity hardware that anyone can purchase, was able to view that video. The chain of events leading up to that point seem so improbable when you look at as a completed system but they all exist and are all products of human innovation.

Isn’t that just mind blowingly awesome?

The Inevitable Disappointment of Curiosity’s Mars Discovery.

New scientific discoveries get me excited, they really do. After discovering the awesome Science Daily I found myself losing hours in research papers that show cased everything from new discoveries with great potential to good old fashioned applications of science that were already producing benefits for everyone involved. Of course it gets a whole lot more exciting when that science is being conducted on an entirely different planet so you can imagine my excitement when I heard that Curiosity had discovered something amazing, something that had could have been “history in the making”.

It’s one thing for space and science nuts like me to get excited about these kinds of things, we usually know what to expect and the confirmation of it is what gets us all giddy, but its another thing entirely for the rest of the world to start getting excited about it. You see what started out as a couple posts on my feed reader with a couple scientists on the Curiosity team eventually mutated into dozens and when I saw that Australian TV programs were covering it I knew that it had gotten out of hand. It’s not that this was wholly unexpected, the public interest in Curosity has been the highest I’ve seen since the Spirit and Opportunity first touched down on Mars, but I knew that this fever pitch over the potential ground breaking news would inevitably lead to public disappointment no matter how significant the find was.

To put it in perspective Curiosity has a very distinct set of capabilities, most of them targeted towards imaging and the study of the composition of the things it comes across. Much of the speculation I read about Curiosity’s find centred around the idea that it had detected life in some form or another which would truly be earth shattering news. However Curiosity just isn’t set up to do that in the way most people think it is as its microscopes are simply not capable of imaging microbes directly. The only way it could detect signs of life would be through the on-board laboratory using its mass spectrometer, gas chromatograph and laser spectrometer and even then it would only detect organic compounds (like methane) which is a good, but not certain, indication of life.

Unfortunately whilst the scientists had done their best to try and down play what the result might actually be the damage has been done as the public’s expectations are wildly out of alignment with what it could actually be. It’s annoying as it doesn’t help the image of the greater scientific community when things like this happen and it’s unfortunately become a semi-regular occurrence. I can really blame the scientists for this one, they really are working on a historic mission that will further our understanding of Mars and many other things, but care has to be taken to avoid these kinds of situations in the future. Hopefully the media will also refrain from sensationalising science to the point where the story no longer matches the reality, but I’m not holding my breath on that one.

For what its worth though I’m still looking forward to whatever it is they found out we’re still only in the beginning of Curiosity’s mission, meaning there’s plenty more science to be done and many more discoveries to be had. Whilst they might not be the amazing things that the media might have speculated them to be they will still be exciting for the scientific community and will undoubtedly further our understanding in many different areas. Hopefully this will be the only PR debacle of Curiosity’s mission as I’d hate to have to write a follow up post.

Curiosity Lands on Mars: The Deepest Investigation Into Mars’ Past Begins.

Whilst scientists and engineers aren’t the most superstitious of people emergent, inexplicable patterns can still make them uneasy in much the same way. The Mars Curse is one such pattern that has seen half of the missions that were destined for our red sister fail in some way, either in transport or shortly after arriving at their destination. You can then imagine the tension that the Mars Science Laboratory (commonly known as the Curiosity rover) team experienced as they started to make their final approach to Mars, especially considering how complicated their landing had to be. Yesterday saw the rover touch down safely on the Martian surface, much to the joy of everyone involved and those of us who were watching on.

For the first couple of days Curiosity is going to be spending most of its time validating systems and ensuring that communications back to Earth are stable. For those of you who were watching the live feed those first few images we saw came via the Mars Odyssey orbiter, the very same orbiter that’s responsible for relaying all the data from them previous generation of Mars rovers. Curiosity has the capability to deliver a lot more data than those two little rovers combined and whilst Odyssey could relay that back it’s much more advantageous to use the higher bandwidth connection on the Mars Reconnaissance Orbiter even if it has to cache the data before sending it (hence why the MRO didn’t beam the first pictures back, it would’ve taken too long).

All of the pictures we’ve seen so far have been from underneath the rover and that’s primarily due to the system verification that’s taking place. The images come from the hazard cameras mounted on the underside of Curiosity and traditionally they’ll be used to identify potential obstacles so that the rover can navigate around them. This is why they’re not colour nor particularly high resolution but the good news is that Curiosity has probably the most impressive imaging hardware of any rover to date just waiting to be turned on. Probably the most exciting part about Curiosity’s main camera is the fact that it will be able to capture true colour images, something that past rovers have had to fudge with coloured filters and post processing (which get close, but aren’t true to life).

Curiosity’s mission is to investigate Mar’s past and see how conducive to life it might have been. It’s not directly looking for life on Mars, that kind of mission would require a whole other set of dedicated tools, but what it’s looking for are what we believe are the precursors for life as we know it. Additionally Curiosity will asses Mars’ current and past meteorological conditions, both for pure scientific reasons and also to provide information to possible future manned missions to Mars, something which SpaceX has expressed a keen interest in accomplishing within the next decade. Considering the size of the total payload, almost 900KG, I’m sure it will have no trouble accomplishing its primary mission and quite possibly much more thereafter.

Curiosity’s power source is a Radioisotope Thermoelectric Generator that’s quite capable of powering the rover for its planned 1 Martian year mission. Now whilst it might not have the solar panels of its predecessors its internal generator is good for 14 years at up to 80% of its peak power production meaning that Curiosity could well give Spirit and Opportunity a run for their money in terms of longevity. Considering just how many instruments are aboard this rover I can see an extended mission proving extremely valuable both in scientific terms as well as becoming the next symbol of NASA’s prowess when it comes to building amazing machines.

A friend of mine asked me this morning if I still had a smile on my face courtesy of NASA and in all honesty I did. I shed a tear when I heard the words “touch down” and shared in the revelry that went on in the Mission Support Area via the NASA TV live feed and just writing that sentence out was enough to bring back the feeling of excitement and joy I felt back then. Curiosity’s mission has only just begun but I can’t help but feel that its been a major success for all involved and I eagerly look forward to everything that this giant rover has to bring us.

It’s a great time for science, space and humanity.