Posts Tagged‘star’

Incomprehensible Scale.

Want to feel really insignificant for a bit?

I don’t know what it is but things like the galaxy IC1101, VY Canis Majoris and all other heavenly bodies that are just beyond anything that I’m capable of imagining captivate me completely. I think it’s probably due to the possibilities that arise from such scale. Just think about it, if one planet in one lonely solar system was able to produce a species like us what kind of life could have formed in these other places. Could it even happen? Would we be able to recognise it if we saw it? The possibilities are nearly endless and that, for me at least, is wildly fascinating.

It’s that desire to find out what’s out there that fuels my passion for transhumanist ideals. Whilst many will argue that ageing and death are a natural part of life that should not be circumvented I instead ask why you want to limit your experience to one life time, especially when the universe is so vast as to provide nearly limitless opportunities for those who wish to explore it.

Some find that incomprehensible scale intimidating, I find it invigorating.

Nomad Planets: Our Intergalactic Truck Stops.

In the short time that I’ve been enamoured with all things space our understanding of the universe has changed significantly. Just a few years ago we had no idea how common multi-planet systems like our own were but today we know that a star is far more likely to have several planets than just a few. At the same time we’ve discovered so many more exoplanets that their discovery is now just routine and the count has tripled from the couple hundred to well over 600 confirmed discoveries (not including the multitude of current candidates). At the same time our understanding of how planets form has also been called into question and today brings news that may just turn our understanding on its head yet again.

Astronomers at the Kavli Institute for Particle Astrophysics and Cosmology released a paper back in February that detailed a very interesting idea. Using the observable effects of gravity in our galaxy combined with the observable mass (detected via microlensing events) they’ve deduced that there needs to be many more planets than what can be accounted for. What’s really curious about these planets is that they would have formed without a parent star:

But how can this be? Every star can’t have tens of thousands of planets ranging from Pluto-sized to Jupiter-sized. This planetary “excess” actually suggests the existence of planets that were born without a star – nomad planets. These planetary vagabonds somehow went through the planet-forming process in interstellar space, not in the dusty proto-planetary disk surrounding a young star.

This astonishing number was calculated by extrapolating a dozen “microlensing” events of nomad worlds passing in front of distant stars. When these nomad planets drifted in front of distant stars, they briefly focused the starlight with their gravity, causing the star to brighten. This brightening was captured by astronomers and the microlensing events could be analysed to reveal the characteristics of the nomad planets.

The idea of planets forming sans a parent star is an interesting one as it turns our current ideas of planet formation on their head. The generally accepted idea of planet formation is that a large accretion disk forms a star first, sweeping away a lot of matter away from it. After that the left over accretion belt begins coalescing into planets, asteroids and other heavenly bodies. Nomad planets then would have formed in smaller accretion disks without the required matter to form a star. If the paper is anything to go by this happens extremely often, to the tune of 100,000 times more often than there are stars in our galaxy.

Such planets are incredibly difficult to detect as we have no beacon to observe for wobbles (the radial velocity method). The only way we have to detect them currently is via microlensing and that means that the planet has to pass between us and another star for us to be able to see it. Even with so many planets and stars out there the chances of them all lining up are pretty slim which explains why we haven’t detected any to date. What we have found though are Brown Dwarfs and they’re quite interesting yet again.

Brown Dwarfs are what you’d call failed stars (or over-achieving planets, take your pick) as whilst they’re quite massive, on the order of 13 times the size of Jupiter at minimum, they still don’t have enough mass to ignite and become a fully fledged star. They do however generate quite a bit of heat which they give off as infra-red light. We can detect this quite readily and have identified many of them in the past. What’s intriguing though is that these Brown Dwarfs (or other nomad planets) could be used as stepping stones to the rest of the galaxy.

There’s a couple things that such planets could be used for. We already know that such planets could be used as a gravity slingshot to give current interstellar craft a speed boost en route to their destination. Another highly theoretical use would be to use these planets as refuelling stops if you were using some kind of hydrogen/helium powered craft. Such planets would also make excellent observation posts as they’d be far away from strong sources of light and radio waves, allowing them an extremely clear view of the universe. Indeed nomad planets could be quite the boon for an interstellar civilization, all we need is the technology to access them.

I’m very interested to see where this theory takes us and hopefully we’ll star seeing some nomad candidates popping up in the exoplanet catalogues in the next couple years. We might not yet be able to make use of them but their mere existence would tell us so much about the formation of heavenly bodies in our universe. At the same time it also raises a lot of questions that we haven’t considered before, but that’s the beauty of science.

Worlds Not of Our Own: The Hunt For Exoplanets.

Humanity, for the longest time, has been aware of planets outside the one that we reside on. Ask anyone today about the planets in our solar system and they’re sure to be able to name at least one other planet but ask them about any outside our solar system and you’re sure to draw a blank look. That’s not their fault however as the discovery of planets outside our solar system (which is by definition, not a planet but an exoplanet) is only recent, dating just over 20 years when the first was discovered in 1988. Since then we’ve discovered well over 500 more planets that exist outside our immediate vicinity and whilst their discovery is great none of them have yet been much like the one we currently call home.

In fact the vast majority of the exoplanets that have been discovered have been massive gas giants orbiting their parent stars at the same distance as Mercury orbits from our sun. This threw scientists initially as back then our current theories on solar system formation didn’t support the notion of large planets forming that close to their parent star. However as time we found more and more examples of such planets, these hot gas giants orbiting at velocities the likes we’d never seen before. The reason behind this is simple, the methods we use to find exoplanets are quite adept at finding these planets and not so much those which we’d consider potential homes.

The method by which the vast majority of exoplanets have been discovered is called the Radial Velocity method. As a planet orbits around its parent star the parent star also moves in tandem, tracing out an elliptical path that’s pinned around the common centre of mass between the two heavenly bodies. As the star does this we can observe changes in the star’s radial velocity, the speed at which the star is moving towards or away from this. Using this data we can then infer the minimum mass, distance and speed required to induce such changes in the planet’s radial velocity which will be the exoplanet itself. This method is prone to finding large planets orbiting close to their parent stars because they will cause larger perturbations in the star’s radial orbit more frequently, allowing us to detect them far more easily.

More recently one of the most productive methods of detecting an exoplanet is the Transit method. This method works by continuously measuring a star’s brightness over a long period of time. When an exoplanet crosses in front of its parent relative to us the star’s apparent brightness drops for the time it is in transit. This of course means that this method is limited to detecting planets and stars whose orbits line up in such a way to cause a transit like this. For earth like exoplanets there’s only a 0.47% chance that such planets will line up just right so we can observe them but thankfully this method can be done on tens of thousands of stars at once, ensuring that we discover at least a few in our search. Exoplanets discovered this way usually require verification by another method before they’re confirmed since there are many things that can cause a dip in a star’s apparent brightness.

There are of course numerous other methods to discover planets outside our solar system but for the most part the vast majority of them have been discovered by one of the two methods mentioned above. For both of them they are heavily skewed towards discovering big planets with short transit times as these produce the most observable effects on their parent stars. Still this does not preclude them from finding exoplanets like earth as shown with the recent discovery of Kepler10-b, a small rocky world in torturous conditions:

The planet, called Kepler-10b, is also the first rocky alien planet to be confirmed by NASA’s Kepler mission using data collected between May 2009 and early January 2010. But, while Kepler-10b is a rocky world, it is not located in the so-called habitable zone – a region in a planetary system where liquid water can potentially exist on the planet’s surface.

“Kepler-10b is the smallest exoplanet discovered to date, and the first unquestionably rocky planet orbiting a star outside our solar system,” said Natalie Batalha, Kepler’s deputy science team leader at NASA’s Ames Research Center in Moffett Field, Calif., at a press conference here at the 217th American Astronomy Society meeting.

Kepler-10b is the smallest transitioning planet to be confirmed to date and shows that it’s possible to discover worlds like our own using current technology. As time goes on and the amount of data increases I’m certain that we’ll eventually find more planets like these, hopefully a bit further out so they’ll be in the habitable zone. The Kepler mission is just a few months shy of its 2 year anniversary with at least another 1.5 years to go and if all goes well it should be returning swaths of data for us for the entire time to come.

I’m always fascinated by the latest discoveries in space even when they’re something like a molten mercury 564 light years away. Our technology is becoming more advanced with every passing day and I know that future missions will end up discovering millions of planets at a time with thousands of potentially life supporting worlds. It’s amazing to think that just 3 decades ago we couldn’t be sure that planets existed outside our solar system and today we know for sure there are more than 500 of them out there.

Ain’t science grand?

Piercing The Blazing Glare of Distant Suns.

Staring up at the night sky is one of the most humbling experiences I’ve ever felt. Each of those tiny points of light is a sun burning furiously in a runaway fusion reaction. By comparison I, a mere human, am no more than a tiny fleck in comparison to one of those stars and barely even an atom when compared to the teaming masses of stars that make up that beautiful nightscape. Even more daunting then is the possibility that each of those twinkling stars plays host to a solar system like our own with dozens of planets just waiting for discovery. Our hunt for these planets has brought us hundreds of large gas giants who by the nature have been very easy to detect. Direct imaging of these planets has been nigh on impossible with the precious few we’ve managed to glimpse being extraordinary examples, rather than the rule. That is set to change, however.

Light, you see, is a funny thing. For centuries scientists pondered over the modelling of it, with the two dominant theories describing it as either as a particle or a wave phenomena. Problem is that light didn’t fit neatly into either of the models, requiring complex modelling in order to fit its behaviour into either the particle or wave category. Today many of the properties of light are now explained thanks to Einstein’s theory of wave-particle duality but for a long time one of the most confounding properties of light was that light can interfere with itself. You’ve probably seen this demonstrated to you back in college via the double slit experiment where you get a pattern of light and dark from a single source of light. At the time I didn’t think much of it past the initial intrigue but my discovery of my passion for space many years later had me thinking about how this might be used.

I had been reading about the hundreds of exoplanet discoveries for a while when I heard of 2M1207b which is thought to be the first directly imaged planet outside our solar system. It’s an exceptional planet being an extremely hot gas giant orbiting a very dim companion star. For systems like our own there would be no chance of seeing any planets from the outside thanks to our extremely bright sun and our relative proximity to it. Still knowing that light had the novel ability to cancel itself out I had wondered if we could say build an apparatus that forced light from a parent star to cancel itself out, letting us peer behind the blazing might to see what lie beneath.

It wasn’t until a few years later when I stumbled across the idea of a StarShade which had been proposed many years previously. In essence it would function as an augmentation to any space based telescope positioning itself perfectly in front of the parent star and reducing its brightness by a whopping 10 billion times. In comparison then the tiny planets which were once outshone would glow bright enough for the telescopes to be able to see them directly, hopefully leading to direct detection of many planets orbiting the star. Unfortunately it appears that this project is now defunct but that doesn’t mean the idea doesn’t live on in other forms.

Most recently an international collaboration of scientists developed a Apodizing Phase Plate coronagraph which is in essence a scaled down version of a starshade that can be installed in current telescopes:

Installed on the European Southern Observatory’s Very Large Telescope, or VLT, atop Paranal Mountain in Chile, the new technology enabled an international team of astronomers to confirm the existence and orbital movement of Beta Pictoris b, a planet about seven to 10 times the mass of Jupiter, around its parent star, Beta Pictoris, 63 light years away.

At the core of the system is a small piece of glass with a highly complex pattern inscribed into its surface. Called an Apodizing Phase Plate, or APP, the device blocks out the starlight in a very defined way, allowing planets to show up in the image whose signals were previously drowned out by the star’s glare.

It’s not just planets that this device helps discover either, it can also help detect distant objects that are hidden behind brighter ones. This enables telescopes to become even more powerful than they once were with minimal modifications. Probably the best part about this is that they’re already using them on the Very Large Telescope in Chile, proving that technology is much more than just a theory.

There’s so much to discover in our universe and it always gets me excited to see these pieces of technology that allow us to pull back the veil and peer ever further into the deepest parts of space. It’s so humbling to know that you’re just a tiny piece of a seemingly infinite universe yet it’s so enthralling that I lose myself for hours just staring up at the night sky. I feel so privileged to be living in a time were our knowledge of this universe is increasing at an ever accelerating rate yet we’re still left wondering at the awesome beauty that’s put before us.